SEPARATION OF A LOWER DIMENSIONAL FREE BOUNDARY IN A TWO-PHASE PROBLEM

被引:0
|
作者
Allen, Mark [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
FRACTIONAL LAPLACIAN; REGULARITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study minimizers of the energy functional integral(D) vertical bar x(n)vertical bar(a)vertical bar del u vertical bar(2) + integral(D boolean AND(Rn-1 x{0})) lambda(+) chi({u>0}) + lambda(-) chi({u<0}) dH(n-1) without any sign restriction on the function u. The main result states that the two free boundaries Gamma(+) = partial derivative{u( . , 0) > 0} and Gamma(-) = partial derivative{u( . , 0) < 0} cannot touch, i.e., Gamma(+) boolean AND Gamma(-) = theta.
引用
收藏
页码:1055 / 1074
页数:20
相关论文
共 50 条
  • [1] A two-phase problem with a lower-dimensional free boundary
    Allen, Mark
    Petrosyan, Arshak
    INTERFACES AND FREE BOUNDARIES, 2012, 14 (03) : 307 - 342
  • [2] On a two-phase free boundary problem
    Ablowitz, MJ
    De Lillo, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (15): : 4307 - 4319
  • [3] On the two-phase free boundary problem for two-dimensional water waves
    Iguchi, T
    Tanaka, N
    Tani, A
    MATHEMATISCHE ANNALEN, 1997, 309 (02) : 199 - 223
  • [4] On the two-phase free boundary problem for two-dimensional water waves
    Tatsuo Iguchi
    Naoto Tanaka
    Atusi Tani
    Mathematische Annalen, 1997, 309 : 199 - 223
  • [5] An one-dimensional two-phase free boundary problem in an angular domain
    Yi, Fahuai
    Han, Xiaoru
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (03) : 959 - 979
  • [6] Two-phase semilinear free boundary problem with a degenerate phase
    Matevosyan, Norayr
    Petrosyan, Arshak
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 41 (3-4) : 397 - 411
  • [7] Two-phase semilinear free boundary problem with a degenerate phase
    Norayr Matevosyan
    Arshak Petrosyan
    Calculus of Variations and Partial Differential Equations, 2011, 41 : 397 - 411
  • [8] Regularity of the free boundary for the two-phase Bernoulli problem
    Guido De Philippis
    Luca Spolaor
    Bozhidar Velichkov
    Inventiones mathematicae, 2021, 225 : 347 - 394
  • [9] Regularity of the free boundary for the two-phase Bernoulli problem
    De Philippis, Guido
    Spolaor, Luca
    Velichkov, Bozhidar
    INVENTIONES MATHEMATICAE, 2021, 225 (02) : 347 - 394
  • [10] On the uniqueness of a solution of a two-phase free boundary problem
    Lu, Guozhen
    Wang, Peiyong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (08) : 2817 - 2833