Regulators of cardiac fibroblast cell state

被引:40
作者
Bretherton, Ross [1 ]
Bugg, Darrian [2 ]
Olszewski, Emily [1 ]
Davis, Jennifer [1 ,2 ,3 ,4 ]
机构
[1] Univ Washington, Dept Bioengn, Seattle, WA 98105 USA
[2] Univ Washington, Dept Pathol, 850 Republican,343, Seattle, WA 98109 USA
[3] Univ Washington, Inst Stem Cell & Regenerat Med, Seattle, WA 98109 USA
[4] Univ Washington, Ctr Cardiovasc Biol, Seattle, WA 98109 USA
基金
美国国家卫生研究院;
关键词
BIAXIAL MECHANICAL-PROPERTIES; SMOOTH-MUSCLE ACTIN; EXTRACELLULAR-MATRIX HYDROGELS; MYOCARDIAL-INFARCTION; SUBSTRATE STIFFNESS; HEART-FAILURE; COMPUTATIONAL MODEL; GENE-EXPRESSION; P38-ALPHA MAPK; SOFT-TISSUES;
D O I
10.1016/j.matbio.2020.04.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fibroblasts are the primary regulator of cardiac extracellular matrix (ECM). In response to disease stimuli car-diac fibroblasts undergo cell state transitions to a myofibroblast phenotype, which underlies the fibrotic response in the heart and other organs. Identifying regulators of fibroblast state transitions would inform which pathways could be therapeutically modulated to tactically control maladaptive extracellular matrix remodeling. Indeed, a deeper understanding of fibroblast cell state and plasticity is necessary for controlling its fate for therapeutic benefit. p38 mitogen activated protein kinase (MAPK), which is part of the noncanonical trans-forming growth factor 8 (TGF8) pathway, is a central regulator of fibroblast to myofibroblast cell state transi-tions that is activated by chemical and mechanical stress signals. Fibroblast intrinsic signaling, local and global cardiac mechanics, and multicellular interactions individually and synergistically impact these state transitions and hence the ECM, which will be reviewed here in the context of cardiac fibrosis. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:117 / 135
页数:19
相关论文
共 164 条
[1]   The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors [J].
Acharya, Asha ;
Baek, Seung Tae ;
Huang, Guo ;
Eskiocak, Banu ;
Goetsch, Sean ;
Sung, Caroline Y. ;
Banfi, Serena ;
Sauer, Marion F. ;
Olsen, Gregory S. ;
Duffield, Jeremy S. ;
Olson, Eric N. ;
Tallquist, Michelle D. .
DEVELOPMENT, 2012, 139 (12) :2139-2149
[2]   TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals [J].
Adapala, Ravi K. ;
Thoppil, Roslin J. ;
Luther, Daniel J. ;
Paruchuri, Sailaja ;
Meszaros, J. Gary ;
Chilian, William M. ;
Thodeti, Charles K. .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2013, 54 :45-52
[3]   Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa [J].
Akiyama, H ;
Chaboissier, MC ;
Behringer, RR ;
Rowitch, DH ;
Schedl, A ;
Epstein, JA ;
de Crombrugghe, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6502-6507
[4]   Hydrogel Substrate Stiffness and Topography Interact to Induce Contact Guidance in Cardiac Fibroblasts [J].
Al-Haque, Shahed ;
Miklas, Jason W. ;
Feric, Nicole ;
Chiu, Loraine L. Y. ;
Chen, Wen Li Kelly ;
Simmons, Craig A. ;
Radisic, Milica .
MACROMOLECULAR BIOSCIENCE, 2012, 12 (10) :1342-1353
[5]  
[Anonymous], CIRC RES
[6]  
[Anonymous], 2014, BLACK YOUNG DEV AGE, V76, P211
[7]   Prognostic Impact of Myocardial Interstitial Fibrosis in Non-Ischemic Heart Failure - Comparison Between Preserved and Reduced Ejection Fraction Heart Failure [J].
Aoki, Tatsuo ;
Fukumoto, Yoshihiro ;
Sugimura, Koichiro ;
Oikawa, Minako ;
Satoh, Kimio ;
Nakano, Makoto ;
Nakayama, Masaharu ;
Shimokawa, Hiroaki .
CIRCULATION JOURNAL, 2011, 75 (11) :2605-2613
[8]  
Asli NS, 2018, BIORXIV
[9]   Mouse models for extracellular matrix diseases [J].
Aszódi, A ;
Pfeifer, A ;
Wendel, M ;
Hiripi, L ;
Fässler, R .
JOURNAL OF MOLECULAR MEDICINE-JMM, 1998, 76 (3-4) :238-252
[10]   Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch [J].
Atance, J ;
Yost, MJ ;
Carver, W .
JOURNAL OF CELLULAR PHYSIOLOGY, 2004, 200 (03) :377-386