Slope modulation of waves governed by sine-Gordon equation

被引:9
作者
Le, Khanh Chau [1 ]
Lu Trong Khiem Nguyen [1 ]
机构
[1] Ruhr Univ Bochum, Lehrstuhl Mech Mat Theorie, D-44780 Bochum, Germany
关键词
Nonlinear wave; Soliton; Slope modulation; Variational-asymptotic method;
D O I
10.1016/j.cnsns.2012.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the variational-asymptotic method we develop the theory of slope modulation of wave packet governed by sine-Gordon equation. A class of asymptotic solutions to the equation of slope modulation is found in terms of the density of solitons. The comparison with the exact n-soliton solution of sine-Gordon equation shows quite excellent agreement. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1563 / 1567
页数:5
相关论文
共 50 条
[41]   A fourth-order AVF method for the numerical integration of sine-Gordon equation [J].
Jiang, Chaolong ;
Sun, Jianqiang ;
Li, Haochen ;
Wang, Yifan .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 313 :144-158
[42]   A physics-constrained deep residual network for solving the sine-Gordon equation [J].
Li, Jun ;
Chen, Yong .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (01)
[43]   Scattering of solitons by dislocations in the modified Korteweg de Vries–sine-Gordon equation [J].
S. P. Popov .
Computational Mathematics and Mathematical Physics, 2015, 55 :2014-2024
[44]   A third order numerical scheme for the two-dimensional sine-Gordon equation [J].
Bratsos, A. G. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 76 (04) :271-282
[45]   Amplitude modulation of waves governed by Korteweg-de Vries equation [J].
Le, Khanh Chau ;
Lu Trong Khiem Nguyen .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2014, 83 :117-123
[46]   Sine-Gordon theory in a semi-strip [J].
Sakhnovich, Alexander .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :964-974
[47]   Evolution of two-dimensional standing and travelling breather solutions for the Sine-Gordon equation [J].
Minzoni, AA ;
Smyth, NF ;
Worthy, AL .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 189 (3-4) :167-187
[48]   Kink dynamics of the sine-Gordon equation in a model with three identical attracting or repulsive impurities [J].
Ekomasov, E. G. ;
Kudryavtsev, R. V. ;
Samsonov, K. Yu. ;
Nazarov, V. N. ;
Kabanov, D. K. .
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2023, 31 (06) :693-709
[49]   A modified predictor-corrector scheme for the two-dimensional sine-Gordon equation [J].
Bratsos, A. G. .
NUMERICAL ALGORITHMS, 2006, 43 (04) :295-308
[50]   SINE-GORDON WOBBLES THROUGH BACKLUND TRANSFORMATIONS [J].
Cuenda, Sara ;
Quintero, Niurka R. ;
Sanchez, Angel .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (05) :1047-1056