Slope modulation of waves governed by sine-Gordon equation

被引:9
|
作者
Le, Khanh Chau [1 ]
Lu Trong Khiem Nguyen [1 ]
机构
[1] Ruhr Univ Bochum, Lehrstuhl Mech Mat Theorie, D-44780 Bochum, Germany
关键词
Nonlinear wave; Soliton; Slope modulation; Variational-asymptotic method;
D O I
10.1016/j.cnsns.2012.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the variational-asymptotic method we develop the theory of slope modulation of wave packet governed by sine-Gordon equation. A class of asymptotic solutions to the equation of slope modulation is found in terms of the density of solitons. The comparison with the exact n-soliton solution of sine-Gordon equation shows quite excellent agreement. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1563 / 1567
页数:5
相关论文
共 50 条
  • [1] Slope modulation of ring waves governed by two-dimensional sine-Gordon equation
    Le, K. C.
    Nguyen, L. T. K.
    WAVE MOTION, 2015, 55 : 84 - 88
  • [2] An ultradiscretization of the sine-Gordon equation
    Isojima, S
    Murata, M
    Nobe, A
    Satsuma, J
    PHYSICS LETTERS A, 2004, 331 (06) : 378 - 386
  • [3] Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities
    Ekomasov, E. G.
    Samsonov, K. Yu
    Gumerov, A. M.
    Kudryavtsev, R., V
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2022, 30 (06): : 749 - 765
  • [4] Localization of the sine-Gordon equation solutions
    Porubov, A. V.
    Fradkov, A. L.
    Bondarenkov, R. S.
    Andrievsky, B. R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 29 - 37
  • [5] Perturbation theory for the double sine-Gordon equation
    Popov, CA
    WAVE MOTION, 2005, 42 (04) : 309 - 316
  • [6] Sine-Gordon equation on the semi-axis
    I. T. Khabibullin
    Theoretical and Mathematical Physics, 1998, 114 : 90 - 98
  • [7] Perturbed soliton solutions of the sine-Gordon equation
    S. P. Popov
    Computational Mathematics and Mathematical Physics, 2009, 49 : 2085 - 2091
  • [8] Perturbed soliton solutions of the sine-Gordon equation
    Popov, S. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (12) : 2085 - 2091
  • [9] Revisiting the inhomogeneously driven sine-Gordon equation
    Jagtap, Ameya D.
    Saha, Esha
    George, Jithin D.
    Murthy, A. S. Vasudeva
    WAVE MOTION, 2017, 73 : 76 - 85
  • [10] Pade numerical schemes for the sine-Gordon equation
    Martin-Vergara, Francisca
    Rus, Francisco
    Villatoro, Francisco R.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 : 232 - 243