A theoretical evaluation of the effect of interlayer spacing and boron doping on lithium storage in graphite

被引:11
作者
Luo, Gaixia [1 ,3 ]
Zhao, Jijun [1 ,2 ]
Wang, Baolin [3 ]
机构
[1] Dalian Univ Technol, Coll Adv Sci & Technol, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116024, Peoples R China
[3] Yancheng Inst Technol, Key Lab Adv Technol Environm Protect Jiangsu Prov, Yancheng 224051, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium battery; Anode material; Graphite; Boron doping; ION BATTERIES; ELECTROCHEMICAL INTERCALATION; POLYATOMIC-MOLECULES; ANODE MATERIALS; CARBON; NANOTUBES; COMPOSITE; ELECTRODE; GRAPHENE; 1ST-PRINCIPLES;
D O I
10.1016/j.commatsci.2012.10.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using first-principles computations, we investigated the effect of the graphite interlayer spacing and substitutional boron doping on the storage capacity of Li ions. We found that increasing the distance between graphite layers only moderately increases the capacity because of a combination of geometric and electronic effects. Doping with boron results in a noticeable increase in the saturation Li intercalation density by about 33.3% at boron contents of BC15 and BC7 with regard to the pristine graphite predicts that the maximum of saturation Li intercalation density locates at around 10 at% of boron content. The electronic structures of Li-intercalated graphite systems were analyzed to explain these effects. (C) 2012 Elsevier B. V. All rights reserved.
引用
收藏
页码:212 / 217
页数:6
相关论文
共 34 条
[11]   Energetic evaluation of possible stacking structures of Li-intercalation in graphite using a first-principle pseudopotential calculation [J].
Imai, Yoji ;
Watanabe, Akio .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 439 (1-2) :258-267
[12]   Structural and electronic properties of lithium intercalated graphite LiC6 -: art. no. 205111 [J].
Kganyago, KR ;
Ngoepe, PE .
PHYSICAL REVIEW B, 2003, 68 (20)
[14]   DEVELOPMENT OF THE COLLE-SALVETTI CORRELATION-ENERGY FORMULA INTO A FUNCTIONAL OF THE ELECTRON-DENSITY [J].
LEE, CT ;
YANG, WT ;
PARR, RG .
PHYSICAL REVIEW B, 1988, 37 (02) :785-789
[15]  
Lee YJ, 2009, SCIENCE, V324, P1051, DOI [10.1126/science.1169041, 10.1126/science.1171541]
[16]   LAYERED-STRUCTURE BC2N AS A NEGATIVE ELECTRODE MATRIX FOR RECHARGEABLE LITHIUM BATTERIES [J].
MORITA, M ;
HANADA, T ;
TSUTSUMI, H ;
MATSUDA, Y ;
KAWAGUCHI, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (05) :1227-1230
[17]  
Mulliken R.S., 1955, J CHEM PHYS, V23, P1997
[18]   Improved graphite anode for lithium-ion batteries - Chemically bonded solid electrolyte interface and nanochannel formation [J].
Peled, E ;
Menachem, C ;
BarTow, D ;
Melman, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :L4-L7
[19]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[20]   Population analysis of plane-wave electronic structure calculations of bulk materials [J].
Segall, MD ;
Shah, R ;
Pickard, CJ ;
Payne, MC .
PHYSICAL REVIEW B, 1996, 54 (23) :16317-16320