A theoretical evaluation of the effect of interlayer spacing and boron doping on lithium storage in graphite

被引:11
作者
Luo, Gaixia [1 ,3 ]
Zhao, Jijun [1 ,2 ]
Wang, Baolin [3 ]
机构
[1] Dalian Univ Technol, Coll Adv Sci & Technol, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116024, Peoples R China
[3] Yancheng Inst Technol, Key Lab Adv Technol Environm Protect Jiangsu Prov, Yancheng 224051, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium battery; Anode material; Graphite; Boron doping; ION BATTERIES; ELECTROCHEMICAL INTERCALATION; POLYATOMIC-MOLECULES; ANODE MATERIALS; CARBON; NANOTUBES; COMPOSITE; ELECTRODE; GRAPHENE; 1ST-PRINCIPLES;
D O I
10.1016/j.commatsci.2012.10.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using first-principles computations, we investigated the effect of the graphite interlayer spacing and substitutional boron doping on the storage capacity of Li ions. We found that increasing the distance between graphite layers only moderately increases the capacity because of a combination of geometric and electronic effects. Doping with boron results in a noticeable increase in the saturation Li intercalation density by about 33.3% at boron contents of BC15 and BC7 with regard to the pristine graphite predicts that the maximum of saturation Li intercalation density locates at around 10 at% of boron content. The electronic structures of Li-intercalated graphite systems were analyzed to explain these effects. (C) 2012 Elsevier B. V. All rights reserved.
引用
收藏
页码:212 / 217
页数:6
相关论文
共 34 条
[1]  
[Anonymous], 1960, The Nature of the Chemical Bond, 3rd ed
[2]   A MULTICENTER NUMERICAL-INTEGRATION SCHEME FOR POLYATOMIC-MOLECULES [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (04) :2547-2553
[3]   Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries [J].
Bulusheva, L. G. ;
Okotrub, A. V. ;
Kurenya, A. G. ;
Zhang, Hongkun ;
Zhang, Huijuan ;
Chen, Xiaohong ;
Song, Huaihe .
CARBON, 2011, 49 (12) :4013-4023
[4]   Kinetic characterization of the electrochemical intercalation of lithium ions into graphite electrodes [J].
Chang, YC ;
Jong, JH ;
Fey, GTK .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (06) :2033-2038
[5]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[6]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764
[7]   Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite [J].
Endo, M ;
Hayashi, T ;
Hong, SH ;
Enoki, T ;
Dresselhaus, MS .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (11) :5670-5674
[8]   Surface modifications of electrode materials for lithium ion batteries [J].
Fu, LJ ;
Liu, H ;
Li, C ;
Wu, YP ;
Rahm, E ;
Holze, R ;
Wu, HQ .
SOLID STATE SCIENCES, 2006, 8 (02) :113-128
[9]   Electrochemical intercalation of single-walled carbon nanotubes with lithium [J].
Gao, B ;
Kleinhammes, A ;
Tang, XP ;
Bower, C ;
Fleming, L ;
Wu, Y ;
Zhou, O .
CHEMICAL PHYSICS LETTERS, 1999, 307 (3-4) :153-157
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191