A structural biology community assessment of AlphaFold2 applications

被引:269
作者
Akdel, Mehmet [1 ]
Pires, Douglas E., V [2 ]
Porta Pardo, Eduard [3 ,4 ]
Janes, Jurgen [5 ]
Zalevsky, Arthur O. [6 ]
Meszaros, Balint [7 ]
Bryant, Patrick [8 ,9 ]
Good, Lydia L. [10 ]
Laskowski, Roman A. [5 ]
Pozzati, Gabriele [8 ,9 ]
Shenoy, Aditi [8 ,9 ]
Zhu, Wensi [8 ,9 ]
Kundrotas, Petras [8 ,9 ]
Serra, Victoria Ruiz [4 ]
Rodrigues, Carlos H. M. [2 ]
Dunham, Alistair S. [5 ]
Burke, David [5 ]
Borkakoti, Neera [5 ]
Velankar, Sameer [5 ]
Frost, Adam [11 ]
Basquin, Jerome [12 ]
Lindorff-Larsen, Kresten [10 ]
Bateman, Alex [5 ]
Kajava, Andrey, V [13 ]
Valencia, Alfonso [4 ]
Ovchinnikov, Sergey [14 ]
Durairaj, Janani [15 ]
Ascher, David B. [16 ]
Thornton, Janet M. [5 ]
Davey, Norman E. [17 ]
Stein, Amelie [10 ]
Elofsson, Arne [8 ,9 ]
Croll, Tristan, I [18 ]
Beltrao, Pedro [5 ,19 ]
机构
[1] Wageningen Univ & Res, Bioinformat Grp, Dept Plant Sci, Wageningen, Netherlands
[2] Univ Melbourne, Sch Comp and Informat Syst, Melbourne, Vic, Australia
[3] Josep Carreras Leukaemia Res Inst IJC, Badalona, Spain
[4] Barcelona Supercomp Ctr BSC, Barcelona, Spain
[5] European Bioinformat Inst, European Mol Biol Lab, Cambridge, England
[6] Russian Acad Sci, Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow, Russia
[7] European Mol Biol Lab, Heidelberg, Germany
[8] Dept Biochem & Biophys, Solna, Sweden
[9] Sci Life Lab, Solna, Sweden
[10] Univ Copenhagen, Dept Biol, Linderstrom Lang Ctr Prot Sci, Copenhagen, Denmark
[11] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[12] Max Planck Inst Biochem, Dept Struct Cell Biol, Martinsried, Germany
[13] Univ Montpellier, Ctr Rech Biol Cellulaire Montpellier, Montpellier, France
[14] Harvard Univ, Div Sci, Fac Arts & Sci, Cambridge, MA 02138 USA
[15] Univ Basel, Biozentrum, Basel, Switzerland
[16] Univ Queensland, Sch Chem and Sci, Div Sci, Brisbane, Qld, Australia
[17] Inst Canc Res, London, England
[18] Univ Cambridge, Dept Haematol, Cambridge Inst Med Res, Cambridge, England
[19] Swiss Fed Inst Technol, Inst Mol Syst Biol, Zurich, Switzerland
基金
俄罗斯科学基金会; 英国惠康基金; 英国医学研究理事会; 瑞典研究理事会;
关键词
PROTEIN STABILITY; MUTATIONS; PREDICTION; FEATURES; SERVER; IDENTIFICATION; SEQUENCE; DOCKING; SPACE; TOOL;
D O I
10.1038/s41594-022-00849-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Here, the authors evaluate the performance of AlphaFold2 and its predicted structures on common structural biological applications, including missense variants, function and ligand binding site prediction, modeling of interactions and modeling of experimental structural data. Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.
引用
收藏
页码:1056 / +
页数:19
相关论文
共 78 条
  • [1] Machine learning in protein structure prediction
    AlQuraishi, Mohammed
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2021, 65 : 1 - 8
  • [2] End-to-End Differentiable Learning of Protein Structure
    AlQuraishi, Mohammed
    [J]. CELL SYSTEMS, 2019, 8 (04) : 292 - +
  • [3] Waterworks-specific composition of drinking water disinfection by-products
    Andersson, Anna
    Harir, Mourad
    Gonsior, Michael
    Hertkorn, Norbert
    Schmitt-Kopplin, Philippe
    Kylin, Henrik
    Karlsson, Susanne
    Ashiq, Muhammad Jamshaid
    Lavonen, Elin
    Nilsson, Kerstin
    Pettersson, AEmma
    Stavklint, Helena
    Bastviken, David
    [J]. ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 2019, 5 (05) : 861 - 872
  • [4] Contact Potential for Structure Prediction of Proteins and Protein Complexes from Potts Model
    Anishchenko, Ivan
    Kundrotas, Petras J.
    Vakser, Ilya A.
    [J]. BIOPHYSICAL JOURNAL, 2018, 115 (05) : 809 - 821
  • [5] ProDy: Protein Dynamics Inferred from Theory and Experiments
    Bakan, Ahmet
    Meireles, Lidio M.
    Bahar, Ivet
    [J]. BIOINFORMATICS, 2011, 27 (11) : 1575 - 1577
  • [6] Using scores derived from statistical coupling analysis to distinguish correct and incorrect folds in de-novo protein structure prediction
    Bartlett, Gail J.
    Taylor, William R.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 71 (02) : 950 - 959
  • [7] DockQ: A Quality Measure for Protein-Protein Docking Models
    Basu, Sankar
    Wallner, Bjorn
    [J]. PLOS ONE, 2016, 11 (08):
  • [8] Structure and distribution of pentapeptide repeats in bacteria
    Bateman, A
    Murzin, AG
    Teichmann, SA
    [J]. PROTEIN SCIENCE, 1998, 7 (06) : 1477 - 1480
  • [9] An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure
    Bhagavat, Raghu
    Sankar, Santhosh
    Srinivasan, Narayanaswamy
    Chandra, Nagasuma
    [J]. STRUCTURE, 2018, 26 (03) : 499 - +
  • [10] The SWISS-MODEL Repository-new features and functionality
    Bienert, Stefan
    Waterhouse, Andrew
    de Beer, Tjaart A. P.
    Tauriello, Gerardo
    Studer, Gabriel
    Bordoli, Lorenza
    Schwede, Torsten
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D313 - D319