One-cohomology and the uniqueness of the group measure space decomposition of a II1 factor

被引:38
|
作者
Vaes, Stefaan [1 ]
机构
[1] Katholieke Univ Leuven, B-3001 Louvain, Belgium
关键词
MALLEABLE ACTIONS; RIGIDITY; SUPERRIGIDITY;
D O I
10.1007/s00208-012-0797-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a unified and self-contained treatment of several of the recent uniqueness theorems for the group measure space decomposition of a II1 factor. We single out a large class of groups I", characterized by a one-cohomology property, and prove that for every free ergodic probability measure preserving action of I" the associated II1 factor has a unique group measure space Cartan subalgebra up to unitary conjugacy. Our methods follow closely a recent article of Chifan-Peterson, but we replace the usage of Peterson's unbounded derivations by Thomas Sinclair's dilation into a malleable deformation by a one-parameter group of automorphisms.
引用
收藏
页码:661 / 696
页数:36
相关论文
共 50 条
  • [41] A II1 Factor Approach to the Kadison-Singer Problem
    Popa, Sorin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (01) : 379 - 414
  • [42] Examples of property (T) II1 factors with trivial fundamental group
    Chifan, Ionut
    Das, Sayan
    Houdayer, Cyril
    Khan, Krishnendu
    AMERICAN JOURNAL OF MATHEMATICS, 2024, 146 (02) : 435 - 465
  • [43] Construction of type II1 factors with prescribed countable fundamental group
    Houdayer, Cyril
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 634 : 169 - 207
  • [44] SOME UNIQUE GROUP-MEASURE SPACE DECOMPOSITION RESULTS
    Chifan, Ionut
    Peterson, Jesse
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (11) : 1923 - 1966
  • [45] A NOTE ON THE INVARIANT SUBSPACE PROBLEM RELATIVE TO A TYPE II1 FACTOR
    Fang, Junsheng
    Hadwin, Don
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (03): : 879 - 893
  • [46] Brown measures of sets of commuting operators in a type II1 factor
    Schultz, H
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 236 (02) : 457 - 489
  • [47] Invariants for normal completely positive maps on the hyperfinite II1 factor
    Debashish Goswami
    Lingaraj Sahu
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 411 - 422
  • [48] Invariants for normal completely positive maps on the hyperfinite II1 factor
    Goswami, Debashish
    Sahu, Lingaraj
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (04): : 411 - 422
  • [49] A class of II1factors with exactly two group measure space decompositions
    Krogager, Anna Sofie
    Vaes, Stefaan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (01): : 88 - 110
  • [50] DECOMPOSITION OF INFINITE-TO-ONE FACTOR CODES AND UNIQUENESS OF RELATIVE EQUILIBRIUM STATES
    Yoo, Jisang
    JOURNAL OF MODERN DYNAMICS, 2018, 13 : 271 - 284