Nanoscale Multireference Quantum Chemistry: Full Configuration Interaction on Graphical Processing Units

被引:84
作者
Fales, B. Scott [1 ]
Levine, Benjamin G. [1 ]
机构
[1] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
关键词
SELF-CONSISTENT-FIELD; DENSITY-FUNCTIONAL THEORY; MULTIPLICITY NATURAL ORBITALS; REPULSION INTEGRAL EVALUATION; COUPLED-CLUSTER; ELECTRONIC-STRUCTURE; MULTICORE CPU; SCF METHOD; GPU; IMPLEMENTATION;
D O I
10.1021/acs.jctc.5b00634
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methods based on a full configuration interaction (FCI) expansion in an active space of orbitals are widely used for modeling chemical phenomena such as bond breaking, multiply excited states, and conical intersections in small-to-medium-sized molecules, but these phenomena occur in systems of all sizes. To scale such calculations up to the nanoscale, we have developed an implementation of FCI in which electron repulsion integral transformation and several of the more expensive steps in a vector formation are performed on graphical processing unit (GPU) hardware. When applied to a 1.7 x 1.4 x 1.4 nm silicon nanoparticle (Si72H64) described with the polarized, all-electron 6-31G** basis set, our implementation can solve for the ground state of the 16-active-electron/16-active-orbital CASCI Hamiltonian (more than 100,000,000 configurations) in 39 min on a single NVidia K40 GPU.
引用
收藏
页码:4708 / 4716
页数:9
相关论文
共 90 条
[1]   Natural orbitals as substitutes for optimized orbitals in complete active space wavefunctions [J].
Abrams, ML ;
Sherrill, CD .
CHEMICAL PHYSICS LETTERS, 2004, 395 (4-6) :227-232
[2]   Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods [J].
Andrade, Xavier ;
Aspuru-Guzik, Alan .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (10) :4360-4373
[3]  
[Anonymous], 2015, CUDA C Programming Guide
[4]   Accurate ab initio density fitting for multiconfigurational self-consistent field methods [J].
Aquilante, Francesco ;
Pedersen, Thomas Bondo ;
Lindh, Roland ;
Roos, Bjoern Olof ;
De Meras, Alfredo Sanchez ;
Koch, Henrik .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (02)
[5]   Fast and Flexible Coupled Cluster Implementation [J].
Asadchev, Andrey ;
Gordon, Mark S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) :3385-3392
[6]   New Multithreaded Hybrid CPU/GPU Approach to Hartree-Fock [J].
Asadchev, Andrey ;
Gordon, Mark S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (11) :4166-4176
[7]   Uncontracted Rys Quadrature Implementation of up to G Functions on Graphical Processing Units [J].
Asadchev, Andrey ;
Allada, Veerendra ;
Felder, Jacob ;
Bode, Brett M. ;
Gordon, Mark S. ;
Windus, Theresa L. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (03) :696-704
[8]   Characterization of Excited-State Magnetic Exchange in Mn2+-Doped ZnO Quantum Dots Using Time-Dependent Density Functional Theory [J].
Badaeva, Ekaterina ;
May, Joseph W. ;
Ma, Jiao ;
Gamelin, Daniel R. ;
Li, Xiaosong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (43) :20986-20991
[9]   A VECTOR AND PARALLEL FULL CONFIGURATION-INTERACTION ALGORITHM [J].
BENDAZZOLI, GL ;
EVANGELISTI, S .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (04) :3141-3150
[10]   Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU-GPU Systems [J].
Bhaskaran-Nair, Kiran ;
Ma, Wenjing ;
Krishnamoorthy, Sriram ;
Villa, Oreste ;
van Dam, Hubertus J. J. ;
Apra, Edoardo ;
Kowalski, Karol .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (04) :1949-1957