Hierarchical Particle Swarm Optimization for the Design of Beta Basis Function Neural Network

被引:0
|
作者
Dhahri, Habib [1 ]
Alimi, Adel M. [1 ,2 ]
Abraham, Ajith [3 ]
机构
[1] Univ Sfax, Res Grp Intelligent Machines REGIM, Natl Sch Engn ENIS, Sfax 3038, Tunisia
[2] Tech Univ Ostrava, Fac Elect Engn & Comp Sci, Ostrava, Czech Republic
[3] Sci Network Innovat & Res Excellence, Machine Intelligence Res Labs, MIR Labs, Washington, DC USA
来源
INTELLIGENT INFORMATICS | 2013年 / 182卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel learning algorithm is proposed for non linear.modeling and identification by the use of the beta basis function neural network (BBFNN). The proposed method is a hierarchical particle swarm optimization (HPSO). The objective of this paper is to optimize the parameters of the beta basis function neural network (BBFNN) with high accuracy. The population of HPSO forms multiple beta neural networks with different structures at an upper hierarchical level and each particle of the previous population is optimized at a lower hierarchical level to improve the performance of each particle swarm. For the beta neural network consisting n particles are formed in the upper level to optimize the structure of the beta neural network. In the lower level, the population within the same length particle is to optimize the free parameters of the beta neural network. Experimental results on a number of benchmarks problems drawn from regression and time series prediction area demonstrate that the HPSO produces a better generalization performance.
引用
收藏
页码:193 / +
页数:3
相关论文
共 50 条
  • [1] Opposition-Based Particle Swarm Optimization for the Design of Beta Basis Function Neural Network
    Dhahri, Habib
    Alimi, Adel. M.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [2] Designing Beta Basis Function Neural Network for Optimization Using Particle Swarm Optimization
    Dhahri, H.
    Alimi, Adel. M.
    Karray, F.
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2564 - 2571
  • [3] The Modified Particle Swarm Optimization for the design of the Beta Basis Function Neural Networks
    Dhahri, H.
    Alimi, Adel. M.
    Karray, F.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3874 - 3880
  • [4] A hierarchical genetic algorithm for the design of beta basis function neural network
    Aouiti, C
    Alimi, AM
    Karray, F
    Maalej, A
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1246 - 1251
  • [5] An Improved Particle Swarm Optimization Algorithm for Radial Basis Function Neural Network
    Duan Qichang
    Zhao Min
    Duan Pan
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 2309 - +
  • [6] Cutting Parameters Optimization Based on Radial Basis Function Neural Network and Particle Swarm Optimization
    Li Baodong
    ADVANCED MATERIALS AND STRUCTURES, PTS 1 AND 2, 2011, 335-336 : 1473 - 1476
  • [7] Cancer Prediction Based on Radical Basis Function Neural Network with Particle Swarm Optimization
    Yan, Xiao-Bo
    Xiong, Wei-Qing
    Hu, Liang
    Zhao, Kuo
    ASIAN PACIFIC JOURNAL OF CANCER PREVENTION, 2014, 15 (18) : 7775 - 7780
  • [8] The design of beta basis function neural network using hierarchical genetic algorithm
    Aouiti, C
    Alimi, AM
    Maalej, A
    ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, PROCEEDINGS, 2003, : 216 - 222
  • [9] The design of beta basis function neural network and beta fuzzy systems by a hierarchical genetic algorithm
    Aouiti, C
    Alimi, AM
    Karray, F
    Maalej, A
    FUZZY SETS AND SYSTEMS, 2005, 154 (02) : 251 - 274
  • [10] Prediction of heart abnormalities using Particle swarm optimization in Radial basis function neural network
    Kelwade, Jairam P.
    Salankar, Suresh S.
    2016 INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION TECHNIQUES (ICACDOT), 2016, : 793 - 797