A GENERAL SEMILOCAL CONVERGENCE RESULT FOR NEWTON'S METHOD UNDER CENTERED CONDITIONS FOR THE SECOND DERIVATIVE

被引:5
作者
Antonio Ezquerro, Jose [1 ]
Gonzalez, Daniel [1 ]
Angel Hernandez, Miguel [1 ]
机构
[1] Univ La Rioja, Dept Math & Computat, Logrono 26004, Spain
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2013年 / 47卷 / 01期
关键词
Newton's method; the Newton-Kantorovich theorem; semilocal convergence; majorizing sequence; a priori error estimates; Hammerstein's integral equation; OPERATORS; THEOREM; EQUATIONS;
D O I
10.1051/m2an/2012026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
From Kantorovich's theory we present a semilocal convergence result for Newton's method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton's method. We illustrate this study with applications to nonlinear integral equations of mixed Hammerstein type.
引用
收藏
页码:149 / 167
页数:19
相关论文
共 23 条
[1]   Third-order iterative methods under Kantorovich conditions [J].
Amat, S. ;
Busquier, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (01) :243-261
[2]   A family of Halley-Chebyshev iterative schemes for non-Frechet differentiable operators [J].
Amat, Sergio ;
Bermudez, Concepcion ;
Busquier, Sonia ;
Mestiri, Driss .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) :486-493
[3]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[4]   An improved convergence analysis and applications for Newton-like methods in Banach space [J].
Argyros, IK .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (7-8) :653-672
[5]   A Newton-Kantorovich theorem for equations involving m-Frechet differentiable operators and applications in radiative transfer [J].
Argyros, IK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) :149-159
[6]   On the Newton-Kantorovich hypothesis for solving equations [J].
Argyros, LK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 169 (02) :315-332
[7]   NONLINEAR FEEDBACK-CONTROL FOR OPERATING A NONISOTHERMAL CSTR NEAR AN UNSTABLE STEADY-STATE [J].
BRUNS, DD ;
BAILEY, JE .
CHEMICAL ENGINEERING SCIENCE, 1977, 32 (03) :257-264
[8]   Halley's method for operators with unbounded second derivative [J].
Ezquerro, J. A. ;
Hernandez, M. A. .
APPLIED NUMERICAL MATHEMATICS, 2007, 57 (03) :354-360
[9]  
Ezquerro J.A., J COMPUT APPL UNPUB
[10]  
Ezquerro JA, 2002, BIT, V42, P519