Effective ion-ion potentials in warm dense matter

被引:17
|
作者
Vorberger, J. [1 ,2 ]
Gericke, D. O. [1 ]
机构
[1] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
基金
英国工程与自然科学研究理事会;
关键词
Warm dense matter; Effective ion potential; Force-matching; Static ion structure; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; RAY THOMSON SCATTERING; PAIR INTERACTION; STRUCTURAL DATA; SIMULATION; HYDROGEN; PLASMAS; EQUILIBRATION; TRANSITION;
D O I
10.1016/j.hedp.2012.12.009
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effective ion-ion potential is extracted from first principle simulations and from experimental structure factors for several warm dense matter systems. Results of three different methods are compared for simple elements like hydrogen or beryllium as well as for composite materials like lithium-hydride and hydrogen-helium plasmas. It is shown that iterative techniques based on the pair distribution function are not unique in their solution and direct force-matching from first principle simulations is subject to finite size effects. Moreover, both methods are not able to provide potentials for small distances. These disadvantages can be avoided by using the static structure factor as input, although higher order correlations are only accounted for within the hypernetted chain approximation in this case. Furthermore, we discuss possibilities to use the extracted effective potentials to investigate the dielectric function beyond linear response. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:178 / 186
页数:9
相关论文
共 50 条
  • [21] Temperature measurement of warm-dense-matter generated by intense heavy-ion beams
    Ni, P. A.
    Kulish, M. I.
    Mintsev, V.
    Nikolaev, D. N.
    Ternovoi, V. Ya.
    Hoffmann, D. H. H.
    Udrea, S.
    Hug, A.
    Tahir, N. A.
    Varentsov, D.
    LASER AND PARTICLE BEAMS, 2008, 26 (04) : 583 - 589
  • [23] Stability of LiF Crystal in the Warm Dense Matter State
    Stegailov, V. V.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2010, 50 (01) : 31 - 34
  • [24] Fundamentals and applications of ion-ion plasmas
    Economou, Demetre J.
    APPLIED SURFACE SCIENCE, 2007, 253 (16) : 6672 - 6680
  • [25] Warm dense matter research at HIAF
    Cheng, Rui
    Lei, Yu
    Zhou, Xianming
    Wang, Yuyu
    Chen, Yanhong
    Zhao, Yongtao
    Ren, Jieru
    Sheng, Lina
    Yang, Jiancheng
    Zhang, Zimin
    Du, Yingchao
    Gai, Wei
    Ma, Xinwen
    Xiao, Guoqing
    MATTER AND RADIATION AT EXTREMES, 2018, 3 (02) : 85 - 93
  • [26] Quasi-statically tamped target for warm dense matter experiments based on all ion accelerator
    Sasaki, Toru
    Kikuchi, Takashi
    Nakajima, Mitsuo
    Kawamura, Tohru
    Horioka, Kazuhiko
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 606 (1-2) : 161 - 164
  • [27] Electric propulsion using ion-ion plasmas
    Aanesland, Ane
    Meige, Albert
    Chabert, Pascal
    SECOND INTERNATIONAL WORKSHOP ON NON-EQUILIBRIUM PROCESSES IN PLASMAS AND ENVIRONMENTAL SCIENCE, 2009, 162
  • [28] Electron-ion temperature equilibration in warm dense tantalum
    Hartley, N. J.
    Belancourt, P.
    Chapman, D. A.
    Doeppner, T.
    Drake, R. P.
    Gericke, D. O.
    Glenzer, S. H.
    Khaghani, D.
    LePape, S.
    Ma, T.
    Neumayer, P.
    Pak, A.
    Peters, L.
    Richardson, S.
    Vorberger, J.
    White, T. G.
    Gregori, G.
    HIGH ENERGY DENSITY PHYSICS, 2015, 14 : 1 - 5
  • [29] Yukawa-Friedel-tail pair potentials for warm dense matter applications
    Dharma-wardana, M. W. C.
    Stanek, Lucas J.
    Murillo, Michael S.
    PHYSICAL REVIEW E, 2022, 106 (06)
  • [30] Experimental methods for warm dense matter research
    Falk, Katerina
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2018, 6