Intensity noise correlations in a two-frequency VECSEL

被引:24
|
作者
De, S. [1 ]
Pal, V. [2 ]
El Amili, A. [1 ,3 ]
Pillet, G. [4 ]
Baili, G. [4 ]
Alouini, M. [3 ,4 ]
Sagnes, I. [5 ]
Ghosh, R. [2 ,6 ]
Bretenaker, F. [1 ]
机构
[1] Univ Paris 11, CNRS, Aime Cotton Lab, F-91405 Orsay, France
[2] Jawaharlal Nehru Univ, Sch Phys Sci, New Delhi 110067, India
[3] CNRS, UMR 6251, Inst Phys Rennes, F-35042 Rennes, France
[4] Thales Res & Technol, F-91767 Palaiseau, France
[5] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
[6] Shiv Nadar Univ, Sch Nat Sci, Gautam Budh Nagar 203207, UP, India
来源
OPTICS EXPRESS | 2013年 / 21卷 / 03期
关键词
EMITTING SEMICONDUCTOR-LASERS; YB-GLASS-LASER; PHOTONICS APPLICATIONS; GENERATION; DYNAMICS; SIGNAL; RADAR;
D O I
10.1364/OE.21.002538
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an experimental and theoretical study of the intensity noise correlation between the two orthogonally polarized modes in a dual frequency Vertical External Cavity Surface Emitting Laser (VECSEL). The dependence of the noise correlation spectra on the non-linear coupling between the two orthogonally polarized modes is put into evidence. Our results show that for small coupling the noise correlation amplitude and phase spectra remain nearly flat (around -6 dB and 0 degrees respectively) within the frequency range of our interest (from 100 kHz to 100 MHz). But for higher values of the coupling constant the low frequency behaviors (below 1-2 MHz) of the correlation amplitude and phase spectra are drastically changed, whereas above this cut-off frequency (1-2 MHz) the correlation spectra are almost independent of coupling strength. The theoretical model is based on the assumptions that the only source of noise in the frequency range of our interest for the two modes are pump noises, which are white noises of equal amplitude but partially correlated. (C) 2013 Optical Society of America
引用
收藏
页码:2538 / 2550
页数:13
相关论文
共 50 条
  • [21] Two-frequency interferometer for a displacement measurement
    Yim, Sin Hyuk
    Cho, D.
    Park, Jouyon
    AMERICAN JOURNAL OF PHYSICS, 2013, 81 (02) : 153 - 156
  • [22] A two-frequency RF photocathode gun
    Dowell, DH
    Ferrario, M
    Kimura, T
    Lewellen, J
    Limborg, C
    Raimondi, P
    Schmerge, JF
    Serafini, L
    Smith, T
    Young, L
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 528 (1-2): : 316 - 320
  • [23] Two-frequency composite pulses in NQR
    Osokin, D. Ya.
    Khusnutdinov, R. R.
    APPLIED MAGNETIC RESONANCE, 2006, 30 (01) : 7 - 11
  • [24] TWO-FREQUENCY TUNABLE LASER.
    Arutyunyan, V.M.
    Dzhotyan, G.P.
    Karmenyan, A.V.
    Meliksetyan, T.E.
    Soviet physics. Technical physics, 1983, 28 (12): : 1471 - 1472
  • [25] Ferromagnetic distortion of a two-frequency wave
    Kalb, RM
    Bennett, WR
    BELL SYSTEM TECHNICAL JOURNAL, 1935, 14 : 322 - 359
  • [26] Specific Features of Two-Frequency Testing
    V. N. Zybov
    Russian Journal of Nondestructive Testing, 2002, 38 : 357 - 365
  • [27] Specific features of two-frequency testing
    Zybov, VN
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2002, 38 (05) : 357 - 365
  • [28] TWO-FREQUENCY MOIRE TOPOGRAPHY.
    Ibrahim, M.Djamil
    Takasaki, Hiroshi
    Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes, 1985, 24 (09): : 1181 - 1182
  • [29] Refractometer with Two-frequency Laser.
    Lebowsky, F.
    PTB - Mitteilungen Forschen und Prufen, 1981, 91 (04): : 273 - 276
  • [30] Two-frequency composite pulses in NQR
    D. Ya. Osokin
    R. R. Khusnutdinov
    Applied Magnetic Resonance, 2006, 30 : 7 - 11