Day-Ahead Electricity Price Forecasting Using a Hybrid Principal Component Analysis Network

被引:40
|
作者
Hong, Ying-Yi [1 ]
Wu, Ching-Ping [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Elect Engn, Chungli 32023, Taiwan
关键词
locational marginal price; forecasting; principal component analysis; MARKETS; MODEL;
D O I
10.3390/en5114711
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Bidding competition is one of the main transaction approaches in a deregulated electricity market. Locational marginal prices (LMPs) resulting from bidding competition and system operation conditions indicate electricity values at a node or in an area. The LMP reveals important information for market participants in developing their bidding strategies. Moreover, LMP is also a vital indicator for the Security Coordinator to perform market redispatch for congestion management. This paper presents a method using a principal component analysis (PCA) network cascaded with a multi-layer feedforward (MLF) network for forecasting LMPs in a day-ahead market. The PCA network extracts essential features from periodic information in the market. These features serve as inputs to the MLF network for forecasting LMPs. The historical LMPs in the PJM market are employed to test the proposed method. It is found that the proposed method is capable of forecasting day-ahead LMP values efficiently.
引用
收藏
页码:4711 / 4725
页数:15
相关论文
共 50 条
  • [1] Forecasting Day-ahead Electricity Price Using a Hybrid Improved Approach
    Hu, Jian-Ming
    Wang, Jian-Zhou
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2017, 12 (06) : 2166 - 2176
  • [2] Day-ahead spatiotemporal solar irradiation forecasting using frequency based hybrid principal component analysis and neural network
    Lan, Hai
    Zhang, Chi
    Hong, Ying-Yi
    He, Yin
    Wen, Shuli
    APPLIED ENERGY, 2019, 247 : 389 - 402
  • [3] Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network
    Amjady, N.
    Daraeepour, A.
    Keynia, F.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2010, 4 (03) : 432 - 444
  • [4] A Deep Learning Based Hybrid Framework for Day-Ahead Electricity Price Forecasting
    Zhang, Rongquan
    Li, Gangqiang
    Ma, Zhengwei
    IEEE ACCESS, 2020, 8 : 143423 - 143436
  • [5] Day-Ahead Electricity Price Forecasting Based on Hybrid Regression Model
    Alkawaz, Ali Najem
    Abdellatif, Abdallah
    Kanesan, Jeevan
    Khairuddin, Anis Salwa Mohd
    Gheni, Hassan Muwafaq
    IEEE ACCESS, 2022, 10 : 108021 - 108033
  • [6] Day-ahead price forecasting of electricity markets by a hybrid intelligent system
    Amjady, Nima
    Hemmati, Meisam
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2009, 19 (01): : 89 - 102
  • [7] Neural Network Approaches to Electricity Price Forecasting in Day-Ahead Markets
    Rosato, Antonello
    Altilio, Rosa
    Araneo, Rodolfo
    Panella, Massimo
    2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2018,
  • [8] A New Day-Ahead Hourly Electricity Price Forecasting Framework
    Ghofrani, M.
    Azimi, R.
    Najafabadi, F. M.
    Myers, N.
    2017 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2017,
  • [9] Day-ahead electricity price analysis and forecasting by singular spectrum analysis
    Miranian, Arash
    Abdollahzade, Majid
    Hassani, Hossein
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2013, 7 (04) : 337 - 346