Heterogeneous SPCNN and its application in image segmentation

被引:24
作者
Yang, Zhen [1 ]
Lian, Jing [1 ,2 ]
Li, Shouliang [1 ]
Guo, Yanan [1 ]
Qi, Yunliang [1 ]
Ma, Yide [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Elect & Informat Engn, Lanzhou 730070, Gansu, Peoples R China
关键词
Heterogeneous simplified pulse coupled neural network; Parameter setting; Image segmentation; Evaluation index; COUPLED NEURAL-NETWORK; LINKING; FUSION;
D O I
10.1016/j.neucom.2018.01.044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Based on the fact that actual cerebral cortex has different structure, a new heterogeneous simplified pulse coupled neural network (HSPCNN) model is proposed in this paper for image segmentation. HSPCNN is constructed with several simplified pulse coupled neural network (SPCNN) models, which have different parameters corresponding to different neurons. An image is segmented by HSPCNN into several regions according to their gray levels. Moreover, the parameter of HSPCNN is set automatically in this paper, the experimental segmentation results of the gray natural images from the Berkeley Segmentation Dataset (BSD 300) show the validity and efficiency of the proposed segmentation method. Finally, an evaluation index is proposed to measure the segmentation result. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:196 / 203
页数:8
相关论文
共 51 条
[1]  
[Anonymous], 2012, INT J EMERG TRENDS T
[2]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[3]   Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis [J].
Ben Hamed, S ;
Duhamel, JR ;
Bremmer, F ;
Graf, W .
EXPERIMENTAL BRAIN RESEARCH, 2001, 140 (02) :127-144
[4]   Image segmentation using a unified Markov random field model [J].
Chen, Xiaohui ;
Zheng, Chen ;
Yao, Hongtai ;
Wang, Bingxue .
IET IMAGE PROCESSING, 2017, 11 (10) :860-869
[5]   A New Automatic Parameter Setting Method of a Simplified PCNN for Image Segmentation [J].
Chen, Yuli ;
Park, Sung-Kee ;
Ma, Yide ;
Ala, Rajeshkanna .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06) :880-892
[6]  
CHIEL HJ, 1989, ADV NEUR IN, V1, P577
[7]   Image Segmentation Using Linked Mean-Shift Vectors and Global/Local Attributes [J].
Cho, Hanjoo ;
Kang, Suk-Ju ;
Kim, Young Hwan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (10) :2132-2140
[8]   NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency [J].
Das, Sudeb ;
Kundu, Malay Kumar .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2012, 50 (10) :1105-1114
[9]   Sub-Markov Random Walk for Image Segmentation [J].
Dong, Xingping ;
Shen, Jianbing ;
Shao, Ling ;
Van Gool, Luc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) :516-527
[10]   Interactive Cosegmentation Using Global and Local Energy Optimization [J].
Dong, Xingping ;
Shen, Jianbing ;
Shao, Ling ;
Yang, Ming-Hsuan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) :3966-3977