Free energy decomposition analysis of bonding and nonbonding interactions in solution

被引:53
作者
Su, Peifeng [1 ]
Liu, Hui
Wu, Wei
机构
[1] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Fujian Prov Key Lab Theoret & Computat Chem, Xiamen 361005, Fujian, Peoples R China
关键词
SOLVATION CONTINUUM MODELS; INTERMOLECULAR INTERACTIONS; MOLECULAR-INTERACTIONS; ANALYTICAL DERIVATIVES; GEOMETRY OPTIMIZATION; 2ND DERIVATIVES; FIELD; GRADIENTS; CHARGES; RESPECT;
D O I
10.1063/1.4736533
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A free energy decomposition analysis algorithm for bonding and nonbonding interactions in various solvated environments, named energy decomposition analysis-polarizable continuum model (EDA-PCM), is implemented based on the localized molecular orbital-energy decomposition analysis (LMO-EDA) method, which is recently developed for interaction analysis in gas phase [P. F. Su and H. Li, J. Chem. Phys. 130, 074109 (2009)]. For single determinant wave functions, the EDA-PCM method divides the interaction energy into electrostatic, exchange, repulsion, polarization, desolvation, and dispersion terms. In the EDA-PCM scheme, the homogeneous solvated environment can be treated by the integral equation formulation of PCM (IEFPCM) or conductor-like polarizable continuum model (CPCM) method, while the heterogeneous solvated environment is handled by the Het-CPCM method. The EDA-PCM is able to obtain physically meaningful interaction analysis in different dielectric environments along the whole potential energy surfaces. Test calculations by MP2 and DFT functionals with homogeneous and heterogeneous solvation, involving hydrogen bonding, vdW interaction, metal-ligand binding, cation-pi, and ionic interaction, show the robustness and adaptability of the EDA-PCM method. The computational results stress the importance of solvation effects to the intermolecular interactions in solvated environments. c 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736533]
引用
收藏
页数:15
相关论文
共 56 条
[1]   DECOMPOSITION OF THE CHEMISORPTION BOND BY CONSTRAINED VARIATIONS - ORDER OF THE VARIATIONS AND CONSTRUCTION OF THE VARIATIONAL SPACES [J].
BAGUS, PS ;
ILLAS, F .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (12) :8962-8970
[2]   A NEW ANALYSIS OF CHARGE-TRANSFER AND POLARIZATION FOR LIGAND-METAL BONDING - MODEL STUDIES OF AL4CO AND AL4NH3 [J].
BAGUS, PS ;
HERMANN, K ;
BAUSCHLICHER, CW .
JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (09) :4378-4386
[3]   Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model [J].
Barone, V ;
Cossi, M .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (11) :1995-2001
[4]  
Barone V, 1998, J COMPUT CHEM, V19, P404, DOI 10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO
[5]  
2-W
[6]   Kohn-Sham density functional theory: Predicting and understanding chemistry [J].
Bickelhaupt, FM ;
Baerends, EJ .
REVIEWS IN COMPUTATIONAL CHEMISTRY, VOL 15, 2000, 15 :1-86
[7]   CALCULATION OF SMALL MOLECULAR INTERACTIONS BY DIFFERENCES OF SEPARATE TOTAL ENERGIES - SOME PROCEDURES WITH REDUCED ERRORS [J].
BOYS, SF ;
BERNARDI, F .
MOLECULAR PHYSICS, 1970, 19 (04) :553-&
[8]   ANALYTICAL DERIVATIVES FOR MOLECULAR SOLUTES .2. HARTREE-FOCK ENERGY FIRST-DERIVATIVE AND 2ND-DERIVATIVE WITH RESPECT TO NUCLEAR COORDINATES [J].
CAMMI, R ;
TOMASI, J .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (05) :3888-3897
[9]   REMARKS ON THE USE OF THE APPARENT SURFACE-CHARGES (ASC) METHODS IN SOLVATION PROBLEMS - ITERATIVE VERSUS MATRIX-INVERSION PROCEDURES AND THE RENORMALIZATION OF THE APPARENT CHARGES [J].
CAMMI, R ;
TOMASI, J .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (12) :1449-1458
[10]   DECOMPOSITION OF THE INTERACTION ENERGY WITH COUNTERPOISE CORRECTIONS TO THE BASIS SET SUPERPOSITION ERROR FOR DIMERS IN SOLUTION - METHOD AND APPLICATION TO THE HYDROGEN-FLUORIDE DIMER [J].
CAMMI, R ;
DELVALLE, FJO ;
TOMASI, J .
CHEMICAL PHYSICS, 1988, 122 (01) :63-74