Short-Term Forecasting and Application About Indoor Cooling Load Based on EDA-PSO-BP Algorithm

被引:0
作者
Huang, ZhiWei [1 ]
Yan, Li [2 ]
Peng, XinYi [3 ]
Tan, Jia [4 ]
机构
[1] South China Univ Technol, Architectural Design Inst, Guangzhou 510640, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Foreign Language, Guangzhou 510640, Guangdong, Peoples R China
[3] South China Univ Technol, Sch Software, Guangzhou 510800, Guangdong, Peoples R China
[4] South China Univ Technol, Sch Comp, Guangzhou 510800, Guangdong, Peoples R China
来源
Web Technologies and Applications: APWeb 2016 Workshops, WDMA, GAP, and SDMA | 2016年 / 9865卷
关键词
PSO; BP neural network; Cooling load prediction; EDA;
D O I
10.1007/978-3-319-45835-9_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to improve the precision of cooling load prediction, the authors of this essay proposes neural network model based on EDA-PSO-BP algorithm. We used PSO optimization algorithm combined with BP neural network to do cooling load prediction experiments of indoor sample data of a building. The results showed that compared with other three kinds of prediction algorithms, the error of this algorithm is minimum and its running speed is the fastest.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 6 条
[1]  
Gibson G.L., 1993, ASHREA J, V3, P60
[2]  
KANDEL ER, 1985, PRINCIPLES NEURAL SC, P1
[3]  
Kennedy J., 1995, P IEEE INT C NEUR NE, V34, P103
[4]  
Lippmann R.P., 1987, IEEE ASSP MAGAZI APR, P12
[5]  
Xiao N., 2008, CHINA MANAG SCI, V15, P69
[6]   Artificial neural networks applications in building energy predictions and a case study for tropical climates [J].
Yalcintas, M ;
Akkurt, S .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2005, 29 (10) :891-901