Poincare 2-group and quantum gravity

被引:27
作者
Mikovic, A. [1 ,2 ]
Vojinovic, M. [2 ]
机构
[1] Univ Lusofona Humanidades & Tecnol, Dept Matemat, P-1749024 Lisbon, Portugal
[2] Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal
关键词
SPIN FOAM MODELS;
D O I
10.1088/0264-9381/29/16/165003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that general relativity can be formulated as a constrained topological theory for flat 2-connections associated with the Poincare 2-group. Matter can be consistently coupled to gravity in this formulation. We also show that the edge lengths of the spacetime manifold triangulation arise as the basic variables in the path-integral quantization, while the state-sum amplitude is an evaluation of a colored 3-complex, in agreement with the category theory results. A 3-complex amplitude for Euclidean quantum gravity is proposed.
引用
收藏
页数:11
相关论文
共 29 条
[1]  
[Anonymous], ARXIV10124719
[2]  
[Anonymous], ARXIV11023660
[3]  
Baez JC, 2000, LECT NOTES PHYS, V543, P25
[4]  
Baez JC, 2008, ARXIV08124969
[5]  
Baez JC, 2010, ARXIV10034485
[6]   Hidden quantum gravity in 4D Feynman diagrams: emergence of spin foams [J].
Baratin, Aristide ;
Freidel, Laurent .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (08) :2027-2060
[7]   2-Group Representations for Spin Foams [J].
Baratin, Aristide ;
Wise, Derek K. .
PLANCK SCALE, 2009, 1196 :28-+
[8]  
Blagojevic M., 2002, STUD HI ENER PHY COS
[9]  
Cirio LS, 2011, ARXIV11060042
[10]   4-DIMENSIONAL TOPOLOGICAL QUANTUM-FIELD THEORY, HOPF, CATEGORIES, AND THE CANONICAL BASES [J].
CRANE, L ;
FRENKEL, IB .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5136-5154