Poincare 2-group and quantum gravity

被引:27
作者
Mikovic, A. [1 ,2 ]
Vojinovic, M. [2 ]
机构
[1] Univ Lusofona Humanidades & Tecnol, Dept Matemat, P-1749024 Lisbon, Portugal
[2] Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal
关键词
SPIN FOAM MODELS;
D O I
10.1088/0264-9381/29/16/165003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that general relativity can be formulated as a constrained topological theory for flat 2-connections associated with the Poincare 2-group. Matter can be consistently coupled to gravity in this formulation. We also show that the edge lengths of the spacetime manifold triangulation arise as the basic variables in the path-integral quantization, while the state-sum amplitude is an evaluation of a colored 3-complex, in agreement with the category theory results. A 3-complex amplitude for Euclidean quantum gravity is proposed.
引用
收藏
页数:11
相关论文
共 29 条
  • [1] [Anonymous], ARXIV10124719
  • [2] [Anonymous], ARXIV11023660
  • [3] Baez JC, 2000, LECT NOTES PHYS, V543, P25
  • [4] Baez JC, 2008, ARXIV08124969
  • [5] Baez JC, 2010, ARXIV10034485
  • [6] Hidden quantum gravity in 4D Feynman diagrams: emergence of spin foams
    Baratin, Aristide
    Freidel, Laurent
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (08) : 2027 - 2060
  • [7] 2-Group Representations for Spin Foams
    Baratin, Aristide
    Wise, Derek K.
    [J]. PLANCK SCALE, 2009, 1196 : 28 - +
  • [8] Blagojevic M., 2002, STUD HI ENER PHY COS
  • [9] Cirio LS, 2011, ARXIV11060042
  • [10] 4-DIMENSIONAL TOPOLOGICAL QUANTUM-FIELD THEORY, HOPF, CATEGORIES, AND THE CANONICAL BASES
    CRANE, L
    FRENKEL, IB
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) : 5136 - 5154