SEMI-SUPERVISED CONDITIONAL RANDOM FIELD FOR HYPERSPECTRAL REMOTE SENSING IMAGE CLASSIFICATION

被引:4
作者
Wu, Junfeng [1 ]
Jiang, Zhiguo
Zhang, Haopeng
Cai, Bowen
Wei, Quanmao
机构
[1] Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
来源
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2016年
基金
中国国家自然科学基金;
关键词
CRF; semi-supervised; hyperspectral; remote sensing; classification; CONSTRAINT;
D O I
10.1109/IGARSS.2016.7729675
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conditional Random Field(CRF) has been successfully applied to the hyperspectral image classification. However, it suffers from the availability of large amount of labeled pixels, which is labor- and time-consuming to obtain in practice. In this paper, a semi-supervised CRF(ssCRF) is proposed for hyperspectral image classification with limited labeled pixels. Laplacian Support Vector Machine(LapSVM), after extended into the composite kernel type, is defined as the association potential. And the Potts model is utilized as the interaction potential. The ssCRF is evaluated on the two benchmarks and the results show the effectiveness of ssCRF.
引用
收藏
页码:2614 / 2617
页数:4
相关论文
共 50 条
  • [31] Active Versus Semi-supervised Learning Paradigm for the Classification of Remote Sensing Images
    Persello, Claudio
    Bruzzone, Lorenzo
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVII, 2011, 8180
  • [32] Semi-supervised multiview embedding for hyperspectral data classification
    Volpi, Michele
    Matasci, Giona
    Kanevski, Mikhail
    Tuia, Devis
    NEUROCOMPUTING, 2014, 145 : 427 - 437
  • [33] A Semi-supervised Road Segmentation Method for Remote Sensing Image Based on SegFormer
    Ma, Tian
    Zhou, Xinlei
    Xi, Runtao
    Yang, Jiayi
    Zhang, Jiehui
    Li, Fanhui
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT II, 2022, 1701 : 189 - 201
  • [34] Semi-Supervised Classification Considering Space and Spectrum Constraint for Remote Sensing Imagery
    Xiong, Biao
    Jiang, Wanshou
    Zhang, Feng
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [35] Hyperspectral Imagery Classification Based on Semi-Supervised Broad Learning System
    Kong, Yi
    Wang, Xuesong
    Cheng, Yuhu
    Chen, C. L. Philip
    REMOTE SENSING, 2018, 10 (05):
  • [36] Hyperspectral semi-supervised classification algorithm considering multiple spatial information
    Wang L.
    Ma J.
    Li Y.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2021, 42 (02): : 280 - 285
  • [37] Soil Erosion Remote Sensing Image Retrieval Based on Semi-supervised Learning
    Li, Shijin
    Zhu, Jiali
    Gao, Xiangtao
    Tao, Jian
    PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2, 2009, : 395 - +
  • [38] Multi-class SVM based remote sensing image classification and its semi-supervised improvement scheme
    Qi, HN
    Yang, JG
    Zhong, YW
    Deng, C
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 3146 - 3151
  • [39] Spatial-Spectral Semi-Supervised Local Discriminant Analysis for Hyperspectral Image Classification
    Hou B.
    Yao M.
    Wang R.
    Zhang F.
    Dai D.
    Guangxue Xuebao/Acta Optica Sinica, 2017, 37 (07):
  • [40] SOIL ANALYSIS WITH VERY FEW LABELS USING SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION
    Grabowski, Bartosz
    Wijata, Agata M.
    Tulczyjew, Lukasz
    Le Saux, Bertrand
    Nalepa, Jakub
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 407 - 411