Development of the applications of titanium nitride in fuel cells

被引:35
作者
Zhang, J. [1 ,2 ]
Hu, H. [3 ]
Liu, X. [1 ]
Li, D. -S. [1 ]
机构
[1] China Three Gorges Univ, Coll Mat & Chem Engn, Key Lab Inorgan Nonmetall Crystalline & Energy Co, Yichang 443002, Hubei, Peoples R China
[2] Chongqing Univ Sci & Technol, Coll Met & Mat Engn, Chongqing 401331, Peoples R China
[3] Univ Alabama, Dept Chem, Box 870336, Tuscaloosa, AL 35487 USA
基金
中国国家自然科学基金;
关键词
OXYGEN REDUCTION REACTION; ENHANCED ELECTROCATALYTIC ACTIVITY; SUPPORTED PLATINUM CATALYST; HIGH-PERFORMANCE CATALYSTS; METAL-FREE ELECTROCATALYST; WALLED CARBON NANOTUBES; NITROGEN-DOPED CARBON; TIN THIN-FILMS; FORMIC-ACID; METHANOL OXIDATION;
D O I
10.1016/j.mtchem.2018.10.005
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, titanium nitrides have attracted extensive interests as an active material for electrodes in fuel cell because of their excellent physical properties (such as high melting points of approximately 3000 degrees C), hardness, wear resistance, high electrical conductivity, and chemical stability. This review highlights the background and recent progress in the applications of titanium nitrides in fuel cells. Some typical applications, such as sensors, electrodeposition, methanol oxidation reaction, ethanol oxidation reaction, formic acid oxidation reaction, and oxygen reduction reaction, are clearly classified and discussed in detail. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 59
页数:18
相关论文
共 196 条
[1]   In situ stress evolution during magnetron sputtering of transition metal nitride thin films [J].
Abadias, G. ;
Guerin, Ph. .
APPLIED PHYSICS LETTERS, 2008, 93 (11)
[2]   Reactive sintering and properties of TiB2 and TiC porous cermets [J].
Akhtar, Farid ;
Hasan, Faizul .
MATERIALS LETTERS, 2008, 62 (8-9) :1242-1245
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Durability and degradation mechanism of titanium nitride based electrocatalysts for PEM (proton exchange membrane) fuel cell applications [J].
Avasarala, Bharat ;
Haldar, Pradeep .
ENERGY, 2013, 57 :545-553
[5]   Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells [J].
Avasarala, Bharat ;
Murray, Thomas ;
Li, Wenzhen ;
Haldar, Pradeep .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (13) :1803-1805
[6]   Graphene-supported Pd-Ru nanoparticles with superior methanol electrooxidation activity [J].
Awasthi, R. ;
Singh, R. N. .
CARBON, 2013, 51 :282-289
[7]   A review of carbon materials and their composites with alloy metals for sodium ion battery anodes [J].
Balogun, Muhammad-Sadeeq ;
Luo, Yang ;
Qiu, Weitao ;
Liu, Peng ;
Tong, Yexiang .
CARBON, 2016, 98 :162-178
[8]   DEPOSITION AND MODIFICATION OF TITANIUM NITRIDE BY ION-ASSISTED ARE DEPOSITION [J].
BENDAVID, A ;
MARTIN, PJ ;
WANG, X ;
WITTLING, M ;
KINDER, TJ .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1995, 13 (03) :1658-1664
[9]   Pre-oxidized and nitrided stainless steel alloy foil for proton exchange membrane fuel cell bipolar plates: Part 1. Corrosion, interfacial contact resistance, and surface structure [J].
Brady, M. P. ;
Wang, H. ;
Turner, J. A. ;
Meyer, H. M., III ;
More, K. L. ;
Tortorelli, P. F. ;
McCarthy, B. D. .
JOURNAL OF POWER SOURCES, 2010, 195 (17) :5610-5618
[10]   First-principles studies of the electronic and elastic properties of metal nitrides XN (X = Sc, Ti, V, Cr, Zr, Nb) [J].
Brik, M. G. ;
Ma, C. -G. .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 51 (01) :380-388