Density for solutions to stochastic differential equations with unbounded drift

被引:3
作者
Olivera, Christian [1 ]
Tudor, Ciprian [2 ,3 ,4 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, BR-13081970 Campinas, SP, Brazil
[2] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[3] ISMMA, Seattle, WA USA
[4] Inst Math Stat & Appl Math, Bucharest, Romania
基金
巴西圣保罗研究基金会;
关键词
Stochastic differential equations; unbounded drift; Malliavin calculus; existence of the density; SDES; FUNCTIONALS; REGULARITY;
D O I
10.1214/18-BJPS400
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Via a special transform and by using the techniques of the Malliavin calculus, we analyze the density of the solution to a stochastic differential equation with unbounded drift.
引用
收藏
页码:520 / 531
页数:12
相关论文
共 22 条
[1]  
Bally V., 2016, LECT NOTES BARCELONA
[2]   CONVERGENCE AND REGULARITY OF PROBABILITY LAWS BY USING AN INTERPOLATION METHOD [J].
Bally, Vlad ;
Caramellino, Lucia .
ANNALS OF PROBABILITY, 2017, 45 (02) :1110-1159
[3]   Holder continuous densities of solutions of SDEs with measurable and path dependent drift coefficients [J].
Banos, David ;
Kruhner, Paul .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (06) :1785-1799
[4]   SMOOTHNESS AND ASYMPTOTIC ESTIMATES OF DENSITIES FOR SDES WITH LOCALLY SMOOTH COEFFICIENTS AND APPLICATIONS TO SQUARE ROOT-TYPE DIFFUSIONS [J].
De Marco, Stefano .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (04) :1282-1321
[5]   Existence of densities for stable-like driven SDE's with Holder continuous coefficients [J].
Debussche, Arnaud ;
Fournier, Nicolas .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (08) :1757-1778
[6]   Flow of diffeomorphisms for SDEs with unbounded Holder continuous drift [J].
Flandoli, F. ;
Gubinelli, M. ;
Priola, E. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (04) :405-422
[7]   Well-posedness of the transport equation by stochastic perturbation [J].
Flandoli, F. ;
Gubinelli, M. ;
Priola, E. .
INVENTIONES MATHEMATICAE, 2010, 180 (01) :1-53
[8]   Absolute continuity for some one-dimensional processes [J].
Fournier, Nicolas ;
Printems, Jacques .
BERNOULLI, 2010, 16 (02) :343-360
[9]   Local Holder Continuity Property of the Densities of Solutions of SDEs with Singular Coefficients [J].
Hayashi, Masafumi ;
Kohatsu-Higa, Arturo ;
Yuki, Go .
JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (04) :1117-1134
[10]   Lower bounds for densities of uniformly elliptic random variables on Wiener space [J].
Kohatsu-Higa, A .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (03) :421-457