Assessing the impact of broadleaf tree structure on airborne full-waveform small-footprint LiDAR signals through simulation

被引:10
|
作者
Romanczyk, Paul [1 ]
van Aardt, Jan [1 ]
Cawse-Nicholson, Kerry [1 ]
Kelbe, David [1 ]
McGlinchy, Joe [2 ]
Krause, Keith [3 ]
机构
[1] Rochester Inst Technol, Chester F Carlson Ctr Imaging Sci, Rochester, NY 14623 USA
[2] ESRI, Redlands, CA 92373 USA
[3] Natl Ecol Observ Network, Boulder, CO 80301 USA
基金
美国国家科学基金会;
关键词
FOREST STAND CHARACTERISTICS; IMAGING SPECTROMETER; CANOPY STRUCTURE; LASER ALTIMETER; VEGETATION; PARAMETERS; BIOMASS; HEIGHT; VALIDATION; RETRIEVAL;
D O I
10.5589/m13-015
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Full-waveform small-footprint Light Detection and Ranging (LiDAR) is still in the early stages of development for forest structure assessment, in part due to the complex interaction between a laser pulse and the forest structure, which is not yet fully understood. In recent years, simulation studies (which claim absolute ground truth) have sought to tackle this problem. The challenge remains to determine the limit of structural fidelity, in terms of tree structural components, that is required for waveform-based simulation studies. Understanding of such interactions could lead to improved biophysical modeling from LiDAR waveform signals. We present a simulation study that evaluates the impact of tree structural components on received waveform signals across different outgoing pulse widths and scanning angles. The simulation was performed on a small red maple (Acer rubrum) and red oak (Quercus rubra) stand. It was concluded the back-scattered waveform is dominated by the leaves, while the trunks, twigs, and leaf stems had a minimal impact on the signal. Scan angle (08, 108, and 208) and outgoing pulse width (4 ns, 8 ns, and 16 ns) do not have as statistically significant (95% confidence) impact on mean waveform comparison statistics. This result has implications on the level of complexity required for future simulations and for waveform LiDAR based structural algorithm development.
引用
收藏
页码:S60 / S72
页数:13
相关论文
共 45 条
  • [1] Simulation of small-footprint full-waveform LiDAR propagation through a tree canopy in 3D
    Kim, Angela M.
    Olsen, Richard C.
    Beland, Martin
    LASER RADAR TECHNOLOGY AND APPLICATIONS XX; AND ATMOSPHERIC PROPAGATION XII, 2015, 9465
  • [2] Airborne small-footprint full-waveform LiDAR data for urban land cover classification
    Qin, Haiming
    Zhou, Weiqi
    Zhao, Wenhui
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [3] Total canopy transmittance estimated from small-footprint, full-waveform airborne LiDAR
    Milenkovic, Milutin
    Wagner, Wolfgang
    Quast, Raphael
    Hollaus, Markus
    Ressl, Camillo
    Pfeifer, Norbert
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 128 : 61 - 72
  • [4] Landcover classification of small-footprint, full-waveform lidar data
    Neuenschwander, Amy L.
    Magruder, Lori A.
    Tyler, Marcus
    JOURNAL OF APPLIED REMOTE SENSING, 2009, 3
  • [5] Landcover classification of small-footprint, full-waveform lidar data
    Neuenschwander, Amy L.
    Magruder, Lori A.
    Tyler, Marcus
    Journal of Applied Remote Sensing, 2009, 3 (01):
  • [6] Effective LAI and CHP of a Single Tree From Small-Footprint Full-Waveform LiDAR
    Fieber, Karolina D.
    Davenport, Ian J.
    Tanase, Mihai A.
    Ferryman, James M.
    Gurney, Robert J.
    Walker, Jeffrey P.
    Hacker, Jorg M.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (09) : 1634 - 1638
  • [7] Estimating forest aboveground biomass using small-footprint full-waveform airborne LiDAR data
    Luo, Shezhou
    Wang, Cheng
    Xi, Xiaohuan
    Nie, Sheng
    Fan, Xieyu
    Chen, Hanyue
    Ma, Dan
    Liu, Jinfu
    Zou, Jie
    Lin, Yi
    Zhou, Guoqing
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 83
  • [8] Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data
    Cao, Lin
    Coops, Nicholas C.
    Innes, John L.
    Dai, Jinsong
    Ruan, Honghua
    She, Guanghui
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 49 : 39 - 51
  • [9] Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data
    Hoefle, Bernhard
    Hollaus, Markus
    Hagenauer, Julian
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2012, 67 : 134 - 147
  • [10] EVALUATION OF SMALL-FOOTPRINT FULL-WAVEFORM AIRBORNE LIDAR INSTRUMENT REQUIREMENTS USING DIRSIG SIMULATIONS OF FORESTS
    Krause, Keith
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6093 - 6096