Hydroxyl substituted Spiro-OMeTAD as multi-site defect healing and carrier extraction enhanced surface passivator toward efficient perovskite solar cells

被引:9
作者
Zhao, Baohua [1 ]
Zhang, Teng [1 ]
Liu, Chengben [1 ]
Li, Zhi [2 ]
Liu, Wenwen [1 ]
Bai, Youru [1 ]
Wang, Tailin [1 ]
Sun, Xinyu [1 ]
Zhu, Shihui [1 ]
Chen, Yanli [1 ]
Liu, Zhaobin [2 ]
Liu, Heyuan [1 ]
Liu, Tao [3 ,4 ,5 ]
Li, Xiyou [1 ]
机构
[1] China Univ Petr East China, Coll Chem & Chem Engn, Coll New Energy, Sch Mat Sci & Engn, Qingdao 266580, Peoples R China
[2] Shandong Energy Grp Co Ltd, 19-F, High Salary Wanda J3 off Bldg, 57-1, Gongye, Jinan 250014, Shandong, Peoples R China
[3] Guangxi Univ, Guangxi Key Lab Proc Nonferrous Met & Featured Mat, Nanning 530004, Peoples R China
[4] Guangxi Univ, Key Lab New Proc Technol Nonferrous Met & Mat, Minist Educ, Nanning 530004, Peoples R China
[5] Guangxi Univ, Sch Resources, Environm & Mat, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Perovskite solar cell; Multi -site defect healing; Hydrogen bonding; Carrier extraction; Improved stability; Hydroxyl group; LARGE GRAIN; PERFORMANCE; STABILITY; FILMS;
D O I
10.1016/j.mtener.2022.101191
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionic defects at surfaces and interfaces account for the trap-mediated nonradiative loss of perovskite solar cells (PSCs). Because these defects are composed of positively and negatively charged species, developing surface passivation materials with multi-site defect healing capacity is desirable. Herein, by replacing the side methoxy group (-OCH3) with a hydroxyl group (-OH), we report 2,20,7,70-Tetrakis [N,Ndi (4-hydroxyphenyl)amino]-9,90-spirobifluorene (Spiro-OHTAD) for PSCs applications. The -OH group of Spiro-OHTAD can bond with uncoordinated Pb2 thorn through a strong electrostatic interaction. Mobile Iand FA thorn defects can be stabilized by coordinative hydrogen bonding. In addition, the metallic Pb0 species, which correlate with the degradation of the PSCs, were largely eliminated after Spiro-OHTAD passivation. In addition to multi-defect healing, the introduced Spiro-OHTAD also improves the energy level mismatch at the perovskite/hole selective interface, facilitating the corresponding hole extraction process. Finally, our Spiro-OHTAD-passivated PSCs reached a device efficiency exceeding 20% and improved stability under ambient conditions. This study provides insights for improving the photocarrier crossinterface transportation of PSCs.
引用
收藏
页数:8
相关论文
共 48 条
[1]   Dimensional Engineering of a Graded 3D-2D Halide Perovskite Interface Enables Ultrahigh Voc Enhanced Stability in the p-i-n Photovoltaics [J].
Bai, Yang ;
Xiao, Shuang ;
Hu, Chen ;
Zhang, Teng ;
Meng, Xiangyue ;
Lin, He ;
Yang, Yinglong ;
Yang, Shihe .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[2]   Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance [J].
Bai, Yang ;
Chen, Haining ;
Xiao, Shuang ;
Xue, Qifan ;
Zhang, Teng ;
Zhu, Zonglong ;
Li, Qiang ;
Hu, Chen ;
Yang, Yun ;
Hu, Zhicheng ;
Huang, Fei ;
Wong, Kam Sing ;
Yip, Hin-Lap ;
Yang, Shihe .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (17) :2950-2958
[3]   A review of textile dye-sensitized solar cells for wearable electronics [J].
Bandara, Thennakoon Mudiyanselage Wijendra J. ;
Hansadi, Jayamaha Mudalige Chandi ;
Bella, Federico .
IONICS, 2022, 28 (06) :2563-2583
[4]   Imperfections and their passivation in halide perovskite solar cells [J].
Chen, Bo ;
Rudd, Peter N. ;
Yang, Shuang ;
Yuan, Yongbo ;
Huang, Jinsong .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (14) :3842-3867
[5]   In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells [J].
Chen, Peng ;
Bai, Yang ;
Wang, Songcan ;
Lyu, Miaoqiang ;
Yun, Jung-Ho ;
Wang, Lianzhou .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (17)
[6]   Lignin-Based Polymer Electrolyte Membranes for Sustainable Aqueous Dye-Sensitized Solar Cells [J].
de Haro, Juan Carlos ;
Tatsi, Elisavet ;
Fagiolari, Lucia ;
Bonomo, Matteo ;
Barolo, Claudia ;
Turri, Stefano ;
Bella, Federico ;
Griffini, Gianmarco .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (25) :8550-8560
[7]   Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability [J].
Ding, Manman ;
Sun, Leijie ;
Chen, Xiayan ;
Luo, Tianyuan ;
Ye, Tian ;
Zhao, Chunyan ;
Zhang, Wenfeng ;
Chang, Haixin .
JOURNAL OF MATERIALS SCIENCE, 2019, 54 (18) :12000-12011
[8]   Controlling Crystal Growth via an Autonomously Longitudinal Scaffold for Planar Perovskite Solar Cells [J].
Duan, Xiaopeng ;
Li, Xiang ;
Tan, Licheng ;
Huang, Zengqi ;
Yang, Jia ;
Liu, Gengling ;
Lin, Zhuojia ;
Chen, Yiwang .
ADVANCED MATERIALS, 2020, 32 (26)
[9]   Multifunctional Two-Dimensional Polymers for Perovskite Solar Cells with Efficiency Exceeding 24% [J].
Fu, Qiang ;
Liu, Hang ;
Tang, Xingchen ;
Wang, Rui ;
Chen, Mingqian ;
Liu, Yongsheng .
ACS ENERGY LETTERS, 2022, 7 (03) :1128-1136
[10]   Tri-Brominated Perovskite Film Management and Multiple-Ionic Defect Passivation for Highly Efficient and Stable Solar Cells [J].
Gong, Zekun ;
He, Benlin ;
Zhu, Jingwei ;
Yao, Xinpeng ;
Wang, Sudong ;
Chen, Haiyan ;
Duan, Yanyan ;
Tang, Qunwei .
SOLAR RRL, 2021, 5 (04)