A variational inequality based stochastic approximation for estimating the flexural rigidity in random fourth-order models

被引:6
作者
Jadamba, Baasansuren [1 ]
Khan, Akhtar A. [1 ]
Raciti, Fabio [2 ]
Sama, Miguel [3 ]
机构
[1] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[2] Univ Catania, Dept Math & Comp Sci, Viale A Doria 6, I-95125 Catania, Italy
[3] Univ Nacl Educ Distancia, Dept Matemat Aplicada, Calle Juan del Rosal 12, Madrid 28040, Spain
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2022年 / 111卷
基金
美国国家科学基金会;
关键词
Inverse problem; Output least-squares; Energy least-squares; Stochastic approximation; INVERSE PROBLEMS; PDE OPTIMIZATION; RANDOM PARAMETER; COLLOCATION; FRAMEWORK; CONVERGENCE;
D O I
10.1016/j.cnsns.2022.106406
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops a stochastic approximation approach for estimating the flexural rigidity in the framework of variational inequalities. The nonlinear inverse problem is analyzed as a stochastic optimization problem using an energy least-squares formulation. A necessary and sufficient optimality condition for the optimization problem is a stochastic variational inequality solved by a stochastic auxiliary problem principle-based iterative scheme. Exhaustive convergence analysis for the proposed iterative scheme is given under quite general conditions on the random noise. Detailed computational results demonstrate the feasibility and the efficacy of the proposed methodology. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Mean-Variance Risk-Averse Optimal Control of Systems Governed by PDEs with Random Parameter Fields Using Quadratic Approximations [J].
Alexanderian, Alen ;
Petra, Noemi ;
Stadler, Georg ;
Ghattas, Omar .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01) :1166-1192
[2]  
[Anonymous], 2003, Sobolev spaces, Pure and Applied Mathematics (Amsterdam)
[3]   Hilbert-valued perturbed subgradient algorithms [J].
Barty, Kengy ;
Roy, Jean-Sebastien ;
Strugarek, Cyrille .
MATHEMATICS OF OPERATIONS RESEARCH, 2007, 32 (03) :551-562
[4]   Gradient convergence in gradient methods with errors [J].
Bertsekas, DP ;
Tsitsiklis, JN .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) :627-642
[5]   Gradient-based estimation of uncertain parameters for elliptic partial differential equations [J].
Borggaard, Jeff ;
van Wyk, Hans-Werner .
INVERSE PROBLEMS, 2015, 31 (06)
[6]   IDENTIFICATION OF A PARAMETER IN FOURTH-ORDER PARTIAL DIFFERENTIAL EQUATIONS BY AN EQUATION ERROR APPROACH [J].
Bush, Nathan ;
Jadamba, Baasansuren ;
Khan, Akhtar A. ;
Raciti, Fabio .
MATHEMATICA SLOVACA, 2015, 65 (05) :1209-1221
[7]   Reduced Basis Methods for Uncertainty Quantification [J].
Chen, Peng ;
Quarteroni, Alfio ;
Rozza, Gianluigi .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01) :813-869
[8]   Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations [J].
Chen, Peng ;
Quarteroni, Alfio ;
Rozza, Gianluigi .
NUMERISCHE MATHEMATIK, 2016, 133 (01) :67-102
[9]   AUXILIARY PROBLEM PRINCIPLE EXTENDED TO VARIATIONAL-INEQUALITIES [J].
COHEN, G .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 59 (02) :325-333
[10]   Analysis of the Ensemble and Polynomial Chaos Kalman Filters in Bayesian Inverse Problems [J].
Ernst, Oliver G. ;
Sprungk, Bjoern ;
Starkloff, Hans-Joerg .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01) :823-851