Thaumatin crystallization aboard the International Space Station using liquid-liquid diffusion in the Enhanced Gaseous Nitrogen Dewar (EGN)

被引:10
作者
Barnes, CL [1 ]
Snell, EH [1 ]
Kundrot, CE [1 ]
机构
[1] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA
来源
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY | 2002年 / 58卷
关键词
D O I
10.1107/S0907444902002767
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper reports results from the first biological crystal-growth experiment on the International Space Station (ISS). Crystals of thaumatin were grown using liquid-liquid diffusion in Tygon(R) tubing transported in the Enhanced Gaseous Nitrogen Dewar (EGN). Different volume ratios and concentrations of protein and precipitant were used to test different adaptations of the vapor-diffusion crystallization recipe to the liquid-liquid diffusion method. The EGN warmed up from 77 to 273 K in about 4 d, about the same time it took to warm from 273 to 293 K. The temperature within the EGN was 293-297 K for the majority of the experiment. Air gaps that blocked liquid-liquid diffusion formed in the tubes. Nonetheless, crystals were grown. Synchrotron diffraction data collected from the best space-grown crystal extended to 1.28 Angstrom, comparable to previous studies of space-grown thaumatin crystals. The resolution of the best ground-control crystal was only 1.47 Angstrom. It is not clear if the difference in diffraction limit arises from factors other than crystal size. Improvements in temperature control and the elimination of air gaps are needed, but the results show that the EGN on the ISS can be used to produce space-grown crystals that diffract to high resolution.
引用
收藏
页码:751 / 760
页数:10
相关论文
共 28 条
[1]   The high-mosaicity illusion: revealing the true physical characteristics of macromolecular crystals [J].
Bellamy, HD ;
Snell, EH ;
Lovelace, J ;
Pokross, M ;
Borgstahl, GEO .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2000, 56 :986-995
[2]   A test of macromolecular crystallization in microgravity: large well ordered insulin crystals [J].
Borgstahl, GEO ;
Vahedi-Faridi, A ;
Lovelace, J ;
Bellamy, HD ;
Snell, EH .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2001, 57 :1204-1207
[3]   Diffusion-controlled crystallization apparatus for microgravity (DCAM): flight and ground-based applications [J].
Carter, DC ;
Wright, B ;
Miller, T ;
Chapman, J ;
Twigg, P ;
Keeling, K ;
Moody, K ;
White, M ;
Click, J ;
Ruble, JR ;
Ho, JX ;
Adcock-Downey, L ;
Bunick, G ;
Harp, J .
JOURNAL OF CRYSTAL GROWTH, 1999, 196 (2-4) :602-609
[4]  
Ducruix A., 1992, CRYSTALLIZATION NUCL, P73
[5]   Protein crystal growth in the advanced protein crystallization facility on the LMS mission: a comparison of Sulfolobus solfataricus alcohol dehydrogenase crystals grown on the ground and in microgravity [J].
Esposito, L ;
Sica, F ;
Sorrentino, G ;
Berisio, R ;
Carotenuto, L ;
Giordano, A ;
Raia, CA ;
Rossi, M ;
Lamzin, VS ;
Wilson, KS ;
Zagari, A .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :386-390
[6]   Supersaturation patterns in counter-diffusion crystallisation methods followed by Mach-Zehnder interferometry [J].
García-Ruiz, JM ;
Novella, ML ;
Otálora, F .
JOURNAL OF CRYSTAL GROWTH, 1999, 196 (2-4) :703-710
[7]   CRYSTALLIZATION OF PROTEINS [J].
KAM, Z ;
SHORE, HB ;
FEHER, G .
JOURNAL OF MOLECULAR BIOLOGY, 1978, 123 (04) :539-555
[8]   STRUCTURES OF 3 CRYSTAL FORMS OF THE SWEET PROTEIN THAUMATIN [J].
KO, TP ;
DAY, J ;
GREENWOOD, A ;
MCPHERSON, A .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1994, 50 :813-825
[9]  
Koszelak S, 1996, BIOTECHNOL BIOENG, V52, P449, DOI 10.1002/(SICI)1097-0290(19961120)52:4<449::AID-BIT1>3.0.CO
[10]  
2-P