Emergent explosive synchronization in adaptive complex networks

被引:51
作者
Avalos-Gaytan, Vanesa [1 ]
Almendral, Juan A. [2 ,3 ,4 ]
Leyva, I. [2 ,3 ,4 ]
Battiston, F. [5 ]
Nicosia, V. [5 ]
Latora, V. [5 ]
Boccaletti, S. [6 ,7 ]
机构
[1] Univ Autonoma Coahuila, Res Ctr Appl Math, Saltillo 25115, Coahuila, Mexico
[2] Univ Politecn Madrid, Ctr Biomed Technol, Madrid 28223, Spain
[3] Univ Rey Juan Carlos, Complex Syst Grp, Madrid 28933, Spain
[4] Univ Rey Juan Carlos, GISC, Madrid 28933, Spain
[5] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[6] CNR Inst Complex Syst, Via Madonna Piano 10, I-50019 Florence, Italy
[7] Embassy Italy Israel, Trade Tower,25 Hamered St, IL-68125 Tel Aviv, Israel
关键词
Explosives - Biological systems - Complex networks;
D O I
10.1103/PhysRevE.97.042301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.
引用
收藏
页数:7
相关论文
共 33 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Emergence of structural patterns out of synchronization in networks with competitive interactions [J].
Assenza, Salvatore ;
Gutierrez, Ricardo ;
Gomez-Gardenes, Jesus ;
Latora, Vito ;
Boccaletti, Stefano .
SCIENTIFIC REPORTS, 2011, 1
[3]   Assortative and modular networks are shaped by adaptive synchronization processes [J].
Avalos-Gaytan, Vanesa ;
Almendral, Juan A. ;
Papo, David ;
Elisa Schaeffer, Satu ;
Boccaletti, Stefano .
PHYSICAL REVIEW E, 2012, 86 (01)
[4]   Explosive transitions in complex networks' structure and dynamics: Percolation and synchronization [J].
Boccaletti, S. ;
Almendral, J. A. ;
Guan, S. ;
Leyva, I. ;
Liu, Z. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zou, Y. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 660 :1-94
[5]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[6]   Adaptive coupling induced multi-stable states in complex networks [J].
Chandrasekar, V. K. ;
Sheeba, Jane H. ;
Subash, B. ;
Lakshmanan, M. ;
Kurths, J. .
PHYSICA D-NONLINEAR PHENOMENA, 2014, 267 :36-48
[7]   Functional Modularity of Background Activities in Normal and Epileptic Brain Networks [J].
Chavez, M. ;
Valencia, M. ;
Navarro, V. ;
Latora, V. ;
Martinerie, J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (11)
[8]   Synchronization of complex networks through local adaptive coupling [J].
De Lellis, Pietro ;
di Bernardo, Mario ;
Garofalo, Franco .
CHAOS, 2008, 18 (03)
[9]   The Spike-Timing Dependence of Plasticity [J].
Feldman, Daniel E. .
NEURON, 2012, 75 (04) :556-571
[10]   Explosive Synchronization Transitions in Scale-Free Networks [J].
Gomez-Gardenes, Jesus ;
Gomez, Sergio ;
Arenas, Alex ;
Moreno, Yamir .
PHYSICAL REVIEW LETTERS, 2011, 106 (12)