Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors

被引:490
作者
Chen, Yen-Chia [1 ]
de Oteyza, Dimas G. [1 ,3 ]
Pedramrazi, Zahra [1 ]
Chen, Chen [4 ]
Fischer, Felix R. [2 ,4 ]
Crommie, Michael F. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Ctr Fis Mat CSIC UPV EHU Mat Phys Ctr, E-20018 San Sebastian, Spain
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
graphene nanoribbon; scanning tunneling microscopy and spectroscopy; molecular precursors; bottom-up synthesis; energy gaps; EDGE STATES; GROWTH;
D O I
10.1021/nn401948e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A prerequisite for future graphene nanoribbon (GNR) applications is the ability to fine-tune the electronic band gap of GNRs. Such control requires the development of fabrication tools capable of precisely controlling width and edge geometry of GNRs at the atomic scale. Here we report a technique for modifying GNR band gaps via covalent self-assembly of a new species of molecular precursors that yields n = 13 armchair GNRs, a wider GNR than those previously synthesized using bottom-up molecular techniques. Scanning tunneling microscopy and spectroscopy reveal that these n = 13 armchair GNRs have a band gap of 1.4 eV, 1.2 eV smaller than the gap determined previously for n = 7 armchair GNRs. Furthermore, we observe a localized electronic state near the end of n = 13 armchair GNRs that is associated with hydrogen-terminated sp(2)-hybridized carbon atoms at the zigzag termini.
引用
收藏
页码:6123 / 6128
页数:6
相关论文
共 30 条
[1]  
[Anonymous], 2007, PHYS REV B
[2]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[3]   IMAGING STANDING WAVES IN A 2-DIMENSIONAL ELECTRON-GAS [J].
CROMMIE, MF ;
LUTZ, CP ;
EIGLER, DM .
NATURE, 1993, 363 (6429) :524-527
[4]  
Ezawa M, 2006, PHYS REV B, V73
[5]   Covalent networks through on-surface chemistry in ultra-high vacuum: state-of-the-art and recent developments [J].
Franc, Gregory ;
Gourdon, Andre .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (32) :14283-14292
[6]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923
[7]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[8]   The structure of graphene grown on the SiC (000(1)over-bar) surface [J].
Hicks, J. ;
Shepperd, K. ;
Wang, F. ;
Conrad, E. H. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (15)
[9]   WSXM:: A software for scanning probe microscopy and a tool for nanotechnology [J].
Horcas, I. ;
Fernandez, R. ;
Gomez-Rodriguez, J. M. ;
Colchero, J. ;
Gomez-Herrero, J. ;
Baro, A. M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (01)
[10]   Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons [J].
Huang, Han ;
Wei, Dacheng ;
Sun, Jiatao ;
Wong, Swee Liang ;
Feng, Yuan Ping ;
Castro Neto, A. H. ;
Wee, Andrew Thye Shen .
SCIENTIFIC REPORTS, 2012, 2