Partitioning of arterial tree for parallel decomposition of hemodynamic calculations

被引:2
作者
Svitenkov, Andrew [1 ]
Zun, Pavel [1 ]
Rekin, Oleg [1 ]
Hoekstra, Alfons G. [2 ]
机构
[1] ITMO Univ, St Petersburg, Russia
[2] Univ Amsterdam, Amsterdam, Netherlands
来源
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016) | 2016年 / 80卷
基金
俄罗斯科学基金会;
关键词
hemodynamics; vascular net; scalability; graph partitioning; coarse-graining; spectral methods; hill-climbing; BLOOD-FLOW;
D O I
10.1016/j.procs.2016.05.393
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Modeling of fluid mechanics for the vascular system is of great value as a source of knowledge about development, progression, and treatment of cardiovascular disease. Full three-dimensional simulation of blood flow in the whole human body is a hard computational problem. We discuss parallel decomposition of blood flow simulation as a graph partitioning problem. The detailed model of full human arterial tree and some simpler geometries are discussed. The effectiveness of coarse-graining as well as pure spectral approaches is studied. Published data can be useful for development of parallel hemodynamic applications as well as for estimation of their effectiveness and scalability.
引用
收藏
页码:977 / 987
页数:11
相关论文
共 50 条
  • [41] Regularized Tree Partitioning and Its Application to Unsupervised Image Segmentation
    Wang, Jingdong
    Jiang, Huaizu
    Jia, Yangqing
    Hua, Xian-Sheng
    Zhang, Changshui
    Quan, Long
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1909 - 1922
  • [42] Hemodynamics in Coronary Arterial Tree of Serial Stenoses
    Chen, Xi
    Gao, Yang
    Lu, Bin
    Jia, Xinwei
    Zhong, Liang
    Kassab, Ghassan S.
    Tan, Wenchang
    Huo, Yunlong
    PLOS ONE, 2016, 11 (09):
  • [43] A FRACTAL CONTINUUM MODEL OF THE PULMONARY ARTERIAL TREE
    KRENZ, GS
    LINEHAN, JH
    DAWSON, CA
    JOURNAL OF APPLIED PHYSIOLOGY, 1992, 72 (06) : 2225 - 2237
  • [44] b-Tree Facets for the Simple Graph Partitioning Polytope
    Michael M. Sørensen
    Journal of Combinatorial Optimization, 2004, 8 : 151 - 170
  • [45] Hemodynamic profiles of arterial hypertension with ambulatory blood pressure monitoring
    Aristizabal-Ocampo, Dagnovar
    Alvarez-Montoya, Diego
    Madrid-Munoz, Camilo
    Fallon-Giraldo, Simon
    Gallo-Villegas, Jaime
    HYPERTENSION RESEARCH, 2023, 46 (06) : 1482 - 1492
  • [46] Hemodynamic in patients with arterial hypertension in stamina (running) or Nifedipin treatment
    Winterfeld, HJ
    Siewert, H
    Bohm, J
    Mobes, R
    Bauer, U
    Reisinger, J
    Conradi, E
    ZEITSCHRIFT FUR KARDIOLOGIE, 1996, 85 (03): : 171 - 177
  • [47] ARTERIAL MECHANICS IN THE FIN WHALE SUGGEST A UNIQUE HEMODYNAMIC DESIGN
    SHADWICK, RE
    GOSLINE, JM
    AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (03): : R805 - R818
  • [48] Computational Hemodynamic Modeling of Arterial Aneurysms: A Mini-Review
    Lipp, Sarah N.
    Niedert, Elizabeth E.
    Cebull, Hannah L.
    Diorio, Tyler C.
    Ma, Jessica L.
    Rothenberger, Sean M.
    Boster, Kimberly A. Stevens
    Goergen, Craig J.
    FRONTIERS IN PHYSIOLOGY, 2020, 11
  • [49] Hemodynamic profiles of arterial hypertension with ambulatory blood pressure monitoring
    Dagnovar Aristizábal-Ocampo
    Diego Álvarez-Montoya
    Camilo Madrid-Muñoz
    Simon Fallon-Giraldo
    Jaime Gallo-Villegas
    Hypertension Research, 2023, 46 : 1482 - 1492
  • [50] Monitoring Pulmonary Arterial Hypertension Using an Implantable Hemodynamic Sensor
    Benza, Raymond L.
    Doyle, Mark
    Lasorda, David
    Parikh, Kishan S.
    Correa-Jaque, Priscilla
    Badie, Nima
    Ginn, Greg
    Airhart, Sophia
    Franco, Veronica
    Kanwar, Manreet K.
    Murali, Srinivas
    Raina, Amresh
    Agarwal, Rahul
    Rajagopal, Sudarshan
    White, Jason
    Biederman, Robert
    CHEST, 2019, 156 (06) : 1176 - 1186