Star arboricity of graphs

被引:38
作者
Hakimi, SL
Mitchem, J
Schmeichel, E
机构
[1] UNIV CALIF DAVIS,DEPT ELECT & COMP ENGN,DAVIS,CA 95616
[2] SAN JOSE STATE UNIV,DEPT MATH & COMP SCI,SAN JOSE,CA 95192
基金
美国国家科学基金会;
关键词
D O I
10.1016/0012-365X(94)00313-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a connection between vertex coloring in graphs and star arboricity which allows us to prove that every planar graph has star arboricity at most 5. This settles an open problem raised independently by Algor and Alon and by Ringer. We also show that deciding if a graph has star arboricity 2 is NP-complete, even for 2-degenerate graphs.
引用
收藏
页码:93 / 98
页数:6
相关论文
共 10 条
[1]  
Akiyama J., 1985, GRAPHS APPL, P1
[2]   THE STAR ARBORICITY OF GRAPHS [J].
ALGOR, I ;
ALON, N .
DISCRETE MATHEMATICS, 1989, 75 (1-3) :11-22
[3]   STAR ARBORICITY [J].
ALON, N ;
MCDIARMID, C ;
REED, B .
COMBINATORICA, 1992, 12 (04) :375-380
[4]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[5]   THE STAR-ARBORICITY OF THE COMPLETE REGULAR MULTIPARTITE GRAPHS [J].
AOKI, Y .
DISCRETE MATHEMATICS, 1990, 81 (02) :115-122
[6]  
Behzad M., 1979, GRAPHS DIGRAPHS
[7]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
BORODIN, OV .
DISCRETE MATHEMATICS, 1979, 25 (03) :211-236
[8]   A DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS INTO EDGE-DISJOINT SUBGRAPHS WITH STAR COMPONENTS [J].
EGAWA, Y ;
URABE, M ;
FUKUDA, T ;
NAGOYA, S .
DISCRETE MATHEMATICS, 1986, 58 (01) :93-95
[9]  
NashWilliams C. St. J. A., 1964, Journal of the London Mathematical Society, V1, P12, DOI [10.1112/jlms/s1-39.1.12, DOI 10.1112/JLMS/S1-39.1.12]
[10]  
RINGEL G, COMMUNICATION