Electrochemically Activated Nickel-Carbon Composite as Ultrastable Cathodes for Rechargeable Nickel-Zinc Batteries

被引:58
作者
Meng, Lingyi [1 ]
Lin, Dun [2 ]
Wang, Jing [2 ]
Zeng, Yinxiang [2 ]
Liu, Yi [3 ]
Lu, Xihong [2 ]
机构
[1] South China Univ Technol, Dept Mech Engn, Sch Civil Engn & Transportat, Guangzhou 510641, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem, KLGHEI Environm & Energy Chem, MOE,Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Guangdong, Peoples R China
[3] Guangdong Pharmaceut Univ, Sch Chem & Chem Engn, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Ni-Zn battery; Ni nanoparticles; N-doped carbon; composite; stable; POT HYDROTHERMAL SYNTHESIS; HIGH-ENERGY; HIGH-CAPACITY; ULTRAFAST; PERFORMANCE; ELECTRODES; FOAM; EVOLUTION; CELLS; ANODE;
D O I
10.1021/acsami.9b04006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Aqueous rechargeable nickel-zinc batteries are highly attractive for large-scale energy storage for their high output voltage, low cost, and excellent safety; however, their inferior cycling durability due to the degradation of the Ni-based cathode is a major obstacle for their applications. In this context, we develop a new kind of porous electrochemically activated Ni nanoparticle/nitrogen-doped carbon (Ni/NC) composite material as ultrastable cathodes for advanced aqueous rechargeable nickel-zinc batteries. The in situ formation of a highly active NiOx(OH)(y) layer on Ni nanoparticles and a unique hydrophilic porous architecture endow the activated Ni/NC composite with high accessible area, abundant active sites, easy electrolyte permeation, and shortened charge/ion transport pathway. Consequently, a high capacity of 381.2 mu Ah cm(-3) with an outstanding rate capability is achieved by the Ni-Zn battery using the optimized activated Ni/NC composite as the cathode (about 30-fold enhancement compared to that with the pristine Ni/NC composite as the cathode). More impressively, the as-assembled Ni-Zn battery achieves an unprecedented cyclic stability with no capacity loss after 36 000 charge/discharge cycles. This is the highest cyclic durability ever for Ni-Zn batteries and other aqueous rechargeable batteries. This novel efficient electrochemical activation strategy to achieve a high-performance cathode and demonstration of an ultrastable aqueous rechargeable Ni-Zn battery may open up new vistas on the development of more advanced and reliable energy storage materials and devices.
引用
收藏
页码:14854 / 14861
页数:8
相关论文
共 45 条
[1]  
Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/NCHEM.686, 10.1038/nchem.686]
[2]   One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor [J].
Chen, Xi'an ;
Chen, Xiaohua ;
Zhang, Fengqiao ;
Yang, Zhi ;
Huang, Shaming .
JOURNAL OF POWER SOURCES, 2013, 243 :555-561
[3]   High-power alkaline Zn-MuO2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic zinc powder [J].
Cheng, FY ;
Chen, J ;
Gou, XL ;
Shen, PW .
ADVANCED MATERIALS, 2005, 17 (22) :2753-+
[4]   Flexible and Wire-Shaped Micro-Supercapacitor Based on Ni(OH)2-Nanowire and Ordered Mesoporous Carbon Electrodes [J].
Dong, Xiaoli ;
Guo, Ziyang ;
Song, Yanfang ;
Hou, Mengyan ;
Wang, Jianqiang ;
Wang, Yonggang ;
Xia, Yongyao .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (22) :3405-3412
[5]   Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage [J].
Fu, Yongping ;
Cai, Xin ;
Wu, Hongwei ;
Lv, Zhibin ;
Hou, Shaocong ;
Peng, Ming ;
Yu, Xiao ;
Zou, Dechun .
ADVANCED MATERIALS, 2012, 24 (42) :5713-5718
[6]   Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide [J].
Gong, Ming ;
Li, Yanguang ;
Zhang, Hongbo ;
Zhang, Bo ;
Zhou, Wu ;
Feng, Ju ;
Wang, Hailiang ;
Liang, Yongye ;
Fan, Zhuangjun ;
Liu, Jie ;
Dai, Hongjie .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :2025-2032
[7]   High-Performance Flexible Solid-State Ni/Fe Battery Consisting of Metal Oxides Coated Carbon Cloth/Carbon Nanofiber Electrodes [J].
Guan, Cao ;
Zhao, Wei ;
Hu, Yating ;
Ke, Qingqing ;
Li, Xin ;
Zhang, Hua ;
Wang, John .
ADVANCED ENERGY MATERIALS, 2016, 6 (20)
[8]   Energy and sustainability [J].
Holdren, John P. .
SCIENCE, 2007, 315 (5813) :737-737
[9]   Construction of Complex CoS Hollow Structures with Enhanced Electrochemical Properties for Hybrid Supercapacitors [J].
Hu, Han ;
Guan, Bu Yuan ;
Lou, Xiong Wen .
CHEM, 2016, 1 (01) :102-113
[10]   Ultrafast Alkaline Ni/Zn Battery Based on Ni-Foam-Supported Ni3S2 Nanosheets [J].
Hu, Pu ;
Wang, Tianshi ;
Zhao, Jingwen ;
Zhang, Chuanjian ;
Ma, Jun ;
Du, Huiping ;
Wang, Xiaogang ;
Cui, Guanglei .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (48) :26396-26399