Are Na-ion batteries nearing the energy storage tipping point? - Current status of non-aqueous, aqueous, and solid-sate Na-ion battery technologies for sustainable energy storage

被引:29
作者
Nagmani [1 ]
Pahari, Debanjana [2 ]
Verma, Prakhar [1 ]
Puravankara, Sreeraj [1 ]
机构
[1] Indian Inst Technol Kharagpur, Sch Energy Sci & Engn, Kharagpur, W Bengal, India
[2] TCG Ctr Res & Educ Sci & Technol, Res Inst Sustainable Energy, Kolkata, W Bengal, India
关键词
Sodium-ion battery; Aqueous; Non-aqueous; solid-state batteries; Battery energy storage systems; Anode; Cathode; Electrolyte; Sustainability; Commercial sodium-ion batteries; POSITIVE ELECTRODE MATERIAL; CATHODE MATERIAL; RESEARCH PROGRESS; ANODE MATERIALS; PRUSSIAN WHITE; HIGH-CAPACITY; HARD CARBONS; HIGH-POWER; SODIUM; INTERCALATION;
D O I
10.1016/j.est.2022.105961
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The growth of renewable energy generation has been unprecedented in the last two decades. Although renewable energy generation offers an alternative to the growing energy needs, the intermittency in power supply and demand makes energy storage an inevitable part of energy generation and distribution. Here, battery energy storage systems (BESS) play a significant role in renewable energy implementation for balanced power generation and consumption. A cost-effective alternative in electrochemical storage has led us to explore sustainable successors for Li-ion battery technology (LIBs). The rechargeable batteries mainly include Na+, K+, Mg2+, Ca2+, and Zn2+ ion technologies. High-temperature sodium storage systems like Na-S and Na-NiCl2, where molten sodium is employed, are already used. In ambient temperature energy storage, sodium-ion batteries (SIBs) are considered the best possible candidates beyond LIBs due to their chemical, electrochemical, and manufacturing similarities. The resource and supply chain limitations in LIBs have made SIBs an automatic choice to the incumbent storage technologies. Shortly, SIBs can be competitive in replacing the LIBs in the grid energy storage sector, low-end consumer electronics, and two/three-wheeler electric vehicles. We review the current status of non-aqueous, aqueous, and all-solid-state SIBs as green, safe, and sustainable solutions for commercial energy storage applications.
引用
收藏
页数:17
相关论文
共 133 条
[1]   Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation [J].
Angel Munoz-Marquez, Miguel ;
Saurel, Damien ;
Luis Gomez-Camer, Juan ;
Casas-Cabanas, Montse ;
Castillo-Martinez, Elizabeth ;
Rojo, Teofilo .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[2]   The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mossbauer spectroscopies [J].
Baggetto, Loic ;
Hah, Hien-Yoong ;
Jumas, Jean-Claude ;
Johnson, Charles E. ;
Johnson, Jacqueline A. ;
Keum, Jong K. ;
Bridges, Craig A. ;
Veith, Gabriel M. .
JOURNAL OF POWER SOURCES, 2014, 267 :329-336
[3]   Probing the Mechanism of Sodium Ion Insertion into Copper Antimony Cu2Sb Anodes [J].
Baggetto, Loic ;
Carroll, Kyler J. ;
Hah, Hien-Yoong ;
Johnson, Charles E. ;
Mullins, David R. ;
Unocic, Raymond R. ;
Johnson, Jacqueline A. ;
Meng, Ying Shirley ;
Veith, Gabriel M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (15) :7856-7864
[4]   Krohnkite-Type Na2Fe(SO4)2•2H2O as a Novel 3.25 V Insertion Compound for Na-Ion Batteries [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Ling, Chris D. ;
Yamada, Atsuo .
CHEMISTRY OF MATERIALS, 2014, 26 (03) :1297-1299
[5]   The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies [J].
Bauer, Alexander ;
Song, Jie ;
Vail, Sean ;
Pan, Wei ;
Barker, Jerry ;
Lu, Yuhao .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[6]   Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030 [J].
Berckmans, Gert ;
Messagie, Maarten ;
Smekens, Jelle ;
Omar, Noshin ;
Vanhaverbeke, Lieselot ;
Van Mierlo, Joeri .
ENERGIES, 2017, 10 (09)
[7]   Progress in Aqueous Rechargeable Sodium-Ion Batteries [J].
Bin, Duan ;
Wang, Fei ;
Tamirat, Andebet Gedamu ;
Suo, Liumin ;
Wang, Yonggang ;
Wang, Chunsheng ;
Xia, Yongyao .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[8]   Selective Control of Composition in Prussian White for Enhanced Material Properties [J].
Brant, William R. ;
Mogensen, Ronnie ;
Colbin, Simon ;
Ojwang, Dickson O. ;
Schmid, Siegbert ;
Haggstrom, Lennart ;
Ericsson, Tore ;
Jaworski, Aleksander ;
Pell, Andrew J. ;
Younesi, Reza .
CHEMISTRY OF MATERIALS, 2019, 31 (18) :7203-7211
[9]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[10]   Roadmap for advanced aqueous batteries: From design of materials to applications [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Xie, Fangxi ;
Ye, Chao ;
Li, Huan ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SCIENCE ADVANCES, 2020, 6 (21)