Modularity for upper continuous and strongly atomic lattices

被引:1
作者
Lazarz, Marcin [1 ]
Siemienczuk, Krzysztof [1 ]
机构
[1] Univ Wroclaw, Dept Log & Methodol Sci, Wroclaw, Poland
关键词
modular lattice; Birkhoff's conditions; upper semimodular lattice; strongly atomic lattice; upper continuous lattice;
D O I
10.1007/s00012-016-0412-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper extends a result of Crawley and Dilworth on upper continuous and strongly atomic modular lattices.
引用
收藏
页码:493 / 495
页数:3
相关论文
共 10 条
  • [1] Modularity for upper continuous and strongly atomic lattices
    Marcin Łazarz
    Krzysztof Siemieńczuk
    Algebra universalis, 2016, 76 : 493 - 495
  • [2] Distributivity for Upper Continuous and Strongly Atomic Lattices
    Aazarz, Marcin
    Siemienczuk, Krzysztof
    STUDIA LOGICA, 2017, 105 (03) : 471 - 478
  • [3] Distributivity for Upper Continuous and Strongly Atomic Lattices
    Marcin Łazarz
    Krzysztof Siemieńczuk
    Studia Logica, 2017, 105 : 471 - 478
  • [4] STRONGLY EXTENDING MODULAR LATTICES
    Atani, Shahabaddin ebrahimi
    Khoramdel, Mehdi
    Hesari, Saboura dolati pish
    Alipour, Mahsa nikmard rostam
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (04): : 541 - 553
  • [5] STRONGLY FULLY INVARIANT-EXTENDING MODULAR LATTICES
    Albu, Toma
    Kara, Yeliz
    Tercan, Adnan
    QUAESTIONES MATHEMATICAE, 2022, 45 (03) : 357 - 367
  • [6] On Conditions for Distributivity or Modularity of Congruence Lattices of Commutative Unary Algebras
    Kartashov, V. K.
    Kartashova, A. V.
    Ponomarjov, V. N.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2013, 13 (04): : 52 - 57
  • [7] Modularity and Distributivity of 3-Generated Lattices with Special Elements Among Generators
    A. G. Gein
    M. P. Shushpanov
    Algebra and Logic, 2017, 56 : 1 - 12
  • [8] MODULARITY AND DISTRIBUTIVITY OF 3-GENERATED LATTICES WITH SPECIAL ELEMENTS AMONG GENERATORS
    Gein, A. G.
    Shushpanov, M. P.
    ALGEBRA AND LOGIC, 2017, 56 (01) : 1 - 12
  • [9] Conditions that a strongly atomic algebraic lattice is semimodular
    He, Peng
    Wang, Xue-ping
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (02) : 913 - 920
  • [10] Constructions of representations of o(2n+1, C) that imply Molev and Reiner-Stanton lattices are strongly Sperner
    Donnelly, RG
    Lewis, SJ
    Pervine, R
    DISCRETE MATHEMATICS, 2003, 263 (1-3) : 61 - 79