LAVRENTIEV'S REGULARIZATION METHOD FOR NONLINEAR ILL-POSED EQUATIONS IN BANACH SPACES

被引:6
作者
George, Santhosh [1 ]
Sreedeep, C. D. [1 ]
机构
[1] NIT Karnataka, Dept Math & Computat Sci, Mangaluru 575025, India
关键词
nonlinear ill-posed problem; Banach space; Lavrentiev regularization; m-accretive mappings; adaptive parameter choice strategy;
D O I
10.1016/S0252-9602(17)30133-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the implementation of Lavrentiev regularization method. Using general Holder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.
引用
收藏
页码:303 / 314
页数:12
相关论文
共 18 条
[11]  
Ji'an W, 2008, ACTA MATH SCI, V28, P141
[12]   Browder-Tikhonov regularization of non-coercive evolution hemivariational inequalities [J].
Liu, ZH .
INVERSE PROBLEMS, 2005, 21 (01) :13-20
[13]  
Ng B, 2004, NONLINEAR FUNCT ANAL, V9, P73
[14]  
Ng B, 2004, SOUTHEST ASIAN B MAT, V28, P1
[15]   On the adaptive selection of the parameter in regularization of ill-posed problems [J].
Pereverzev, S ;
Schock, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2060-2076
[16]  
Semenova E., 2010, Comput. Methods Appl. Math, V10, P444, DOI [10.2478/cmam-2010-0026, DOI 10.2478/CMAM-2010-0026]
[17]   On the method of Lavrentiev regularization for nonlinear ill-posed problems [J].
Tautenhahn, U .
INVERSE PROBLEMS, 2002, 18 (01) :191-207
[18]   An analysis of Lavrentiev regularization method and Newton type process for nonlinear ill-posed problems [J].
Vasin, Vladmir ;
George, Santhosh .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 230 :406-413