Graded buffer layer effect on performance of the amorphous silicon thin film solar cells

被引:2
作者
Lien, Shui-Yang [1 ]
Yang, Meng-Jia [1 ]
Lin, Yang-Shih [2 ]
Chen, Chia-Fu [1 ]
Lin, Po-Hung [3 ]
Hsu, Chia-Hsun [3 ]
Huang, Po-Ching [3 ]
Shen, Yu-Ming [3 ]
机构
[1] MingDao Univ, Dept Mat Sci & Engn, Chunhua 52345, Taiwan
[2] Natl Formosa Univ, Grad Inst Mat Sci & Green Engn, Huwei Township, Yunlin, Taiwan
[3] Yuan Ze Univ, Dept Mech Engn, Taoyuan 32003, Taiwan
来源
ENERGY, ENVIRONMENT AND BIOLOGICAL MATERIALS | 2011年 / 685卷
关键词
Thin film solar cell; PECVD; TCAD; amorphous silicon; buffer layer; CIRCUIT;
D O I
10.4028/www.scientific.net/MSF.685.60
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is widely accepted that graded buffer layer between the p-layer and i-layer increase the efficiency of amorphous silicon solar cells. The open-circuit voltage (V-OC), short current density (J(SC)) and fill factor (FF) of the thin film solar cell are obviously increased. In the present study, hydrogenated amorphous silicon (a-Si:H) thin film solar cells have been fabricated by 27.12 MHz plasma enhanced chemical vapor deposition (PECVD). We discussed the three conditions at the p/i interface without buffer layer, buffer layer and graded buffer layer of thin film solar cells by TCAD software. The influences of the performance of the solar cell with the different buffer layer are investigated. The cell with graded buffer layer has higher efficiency compared with the cells without buffer layer and buffer layer. The graded buffer layer enhances the conversion efficiency of the solar cell by improving V-OC and FF. It could be attributed to a reduction of interface recombination rate near the junction. The best performance of conversion efficiency (eta)=8.57% (V-OC=0.81 V, J(SC)=15.46 mA/cm(2), FF=68%) of the amorphous silicon thin film solar cell was achieved.
引用
收藏
页码:60 / +
页数:2
相关论文
共 11 条
[1]   PERFORMANCE DEPENDENCE OF A S-SI/A-SI DOUBLE JUNCTION SOLAR-CELL ON THE QUALITY OF THE A-SI=C=H BUFFER LAYER AT P+-SI=C=H/I-A-SI=H INTERFACE [J].
CHAUDHURI, P ;
RAY, S ;
BATABYAL, AK ;
BARUA, AK .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1995, 36 (01) :45-50
[2]  
Chaudhuri P., 1994, SOLAR ENERGY MAT SOL, V36, P45
[3]   High efficiency microcrystalline silicon solar cells with Hot-Wire CVD buffer layer [J].
Finger, F. ;
Mai, Y. ;
Klein, S. ;
Carius, R. .
THIN SOLID FILMS, 2008, 516 (05) :728-732
[4]  
Kusian W., 1989, P 9 EC PHOT SOL EN C, P55
[5]   The role of the buffer layer in the light of a new equivalent circuit for amorphous silicon solar cells [J].
Merten, J ;
Voz, C ;
Muñoz, A ;
Asensi, JM ;
Andreu, J .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1999, 57 (02) :153-165
[6]   Highly stabilized protocrystalline silicon multilayer solar cell using a silicon-carbide double p-layer structure [J].
Myong, SY ;
Kwon, SW ;
Lim, KS ;
Konagai, M .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 85 (01) :133-140
[7]   Amorphous Si1-xCx:H films prepared by hot-wire CVD using SiH3CH3 and SiH4 mixture gas and its application to window layer for silicon thin film solar cells [J].
Ogawa, Shunsuke ;
Okabe, Masaaki ;
Itoh, Takashi ;
Yoshida, Norimitsu ;
Nonomura, Shuichi .
THIN SOLID FILMS, 2008, 516 (05) :758-760
[8]  
Shen C.T., 2008, ANN M TAIW ASS COAT
[9]   Relation between the open-circuit voltage and the band gap of absorber and buffer layers in a-Si:H solar cells [J].
Vet, B. ;
Zeman, M. .
THIN SOLID FILMS, 2008, 516 (20) :6873-6876
[10]   Stability of microcrystalline silicon solar cells with HWCVD buffer layer [J].
Wang, Y. ;
Geng, X. ;
Stiebig, H. ;
Finger, F. .
THIN SOLID FILMS, 2008, 516 (05) :733-735