A Technique To Pretreat Graphite Which Allows the Rapid Dispersion of Defect-Free Graphene in Solvents at High Concentration

被引:51
作者
Barwich, Sebastian
Khan, Umar
Coleman, Jonathan N. [1 ]
机构
[1] Univ Dublin Trinity Coll, Ctr Res Adapt Nanostruct & Nanodevices CRANN, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
LIQUID-PHASE EXFOLIATION; SOLUBILITY;
D O I
10.1021/jp4047006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have demonstrated a simple method to pretreat graphite powder resulting in a significant reduction in the time required to produce dispersions of solvent-exfoliated graphene. Sonication of graphite in either stabilizing solvents such as NMP or nonstabilizing solvents such as water results in significant breakage of graphite flakes and considerable exfoliation to give graphene. As expected, much of the graphene produced is stable indefinitely in NMP. Surprisingly, however, in the water-based samples unaggregated graphene was observed up to 26 h after sonication with complete sedimentation only observed after 70-130 h. In both cases, removal of the solvent resulted in a powder consisting of broken graphite flakes and reaggregated graphene. For both water and NMP pretreatments, this powder could be very easily redispersed by sonication in NMP to give good quality, defect-free graphene nanosheets. However, the concentration achievable after a given resonication time depended strongly on the pretreatment solvent and time. Redispersion of NMP-pretreated powder occurred much faster with concentrations of 1 mg/mL achieved after only 1 min resonication. This pretreatment technique will facilitate both the storage and transportation of liquid exfoliated graphene.
引用
收藏
页码:19212 / 19218
页数:7
相关论文
共 37 条
[1]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[2]   Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes [J].
Bourlinos, Athanasios B. ;
Georgakilas, Vasilios ;
Zboril, Radek ;
Steriotis, Theodore A. ;
Stubos, Athanasios K. ;
Trapalis, Christos .
SOLID STATE COMMUNICATIONS, 2009, 149 (47-48) :2172-2176
[3]   Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes [J].
Bourlinos, Athanasios B. ;
Georgakilas, Vasilios ;
Zboril, Radek ;
Steriotis, Theodore A. ;
Stubos, Athanasios K. .
SMALL, 2009, 5 (16) :1841-1845
[4]   Liquid Exfoliation of Defect-Free Graphene [J].
Coleman, Jonathan N. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (01) :14-22
[5]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[6]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[9]   Preparation of graphene relying on porphyrin exfoliation of graphite [J].
Geng, Jianxin ;
Kong, Byung-Seon ;
Yang, Seung Bo ;
Jung, Hee-Tae .
CHEMICAL COMMUNICATIONS, 2010, 46 (28) :5091-5093
[10]   Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation [J].
Green, Alexander A. ;
Hersam, Mark C. .
NANO LETTERS, 2009, 9 (12) :4031-4036