Dynamical analysis on traveling wave of a reaction-diffusion model

被引:8
作者
Zeng, Yanni [1 ]
Sun, Xianbo [1 ]
Yu, Pei [1 ]
机构
[1] Western Univ, Dept Appl Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Reaction-diffusion model; Periodic traveling wave; Abelian integral; Bifurcation; Monotonicity;
D O I
10.1016/j.aml.2020.106550
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a class of nonlinear reaction-diffusion equations is studied, and Abelian integral method is applied to show the existence of a unique periodic traveling wave solution. Simulation is presented to verify the theoretical prediction. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model [J].
Dong, Yaying ;
Zhang, Shunli ;
Li, Shanbing .
ADVANCES IN DIFFERENCE EQUATIONS, 2016, :1-15
[42]   A Mechanism Based Reaction-Diffusion Model for Spurt Oxidation of Bitumen [J].
Muhlich, Uwe .
RILEM 252-CMB SYMPOSIUM: CHEMO-MECHANICAL CHARACTERIZATION OF BITUMINOUS MATERIALS, 2019, 20 :3-8
[43]   A reaction-diffusion model for radiation-induced bystander effects [J].
Olobatuyi, Oluwole ;
de Vries, Gerda ;
Hillen, Thomas .
JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 75 (02) :341-372
[44]   Global structure of competing model with flocculation in a reaction-diffusion chemostat [J].
Shi, Yao ;
Bao, Xiongxiong .
APPLICABLE ANALYSIS, 2024, 103 (17) :3116-3130
[45]   On a predator-prey reaction-diffusion model with nonlocal effects [J].
Han, Bang-Sheng ;
Yang, Ying-Hui .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 46 :49-61
[46]   A novel method for image segmentation using reaction-diffusion model [J].
Wen, Wenying ;
He, Chuanjiang ;
Zhang, Yushu ;
Fang, Zhijun .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2017, 28 (02) :657-677
[47]   Pattern formation of a biomass-water reaction-diffusion model [J].
Lei, Chengxia ;
Zhang, Guanghui ;
Zhou, Jialin .
APPLIED MATHEMATICS LETTERS, 2022, 123
[48]   Isolated periodic wave trains and local critical wave lengths for a nonlinear reaction-diffusion equation [J].
Huang, Wentao ;
Chen, Ting ;
Li, Jibin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 74 :84-96
[49]   Dynamics Analysis in a Gierer-Meinhardt Reaction-Diffusion Model with Homogeneous Neumann Boundary Condition [J].
Yan, Xiang-Ping ;
Ding, Ya-Jun ;
Zhang, Cun-Hua .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (09)
[50]   Stability and bifurcation analysis of reaction-diffusion neural networks with delays [J].
Zhao, Hongyong ;
Yuan, Jinglan ;
Zhang, Xuebing .
NEUROCOMPUTING, 2015, 147 :280-290