Enhancing optical performance of bifacial PV modules

被引:28
|
作者
Saw, Min Hsian [1 ]
Khoo, Yong Sheng [1 ]
Singh, Jai Prakash [1 ]
Wang, Yan [1 ]
机构
[1] Natl Univ Singapore NUS, Solar Energy Res Inst Singapore SERIS, 7 Engn Dr 1, Singapore 117574, Singapore
来源
7TH INTERNATIONAL CONFERENCE ON SILICON PHOTOVOLTAICS, SILICONPV 2017 | 2017年 / 124卷
基金
新加坡国家研究基金会;
关键词
bifacial solar cells; glass/glass bifacial module; cell transmittance loss; cell-gap loss; optical gain; IR reflective coating; white reflective coating; POWER;
D O I
10.1016/j.egypro.2017.09.285
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In contrast to monofacial cells, bifacial solar cells are able to harvest sunlight from both front and rear side. Bifacial cells can be encapsulated into different module structures: glass/glass, glass/transparent backsheet or glass/backsheet. Under real-world conditions, a glass/glass or glass/transparent backsheet bifacial PV module produces higher energy yield due to the absorption of the light scattered from the ground and surroundings. However, due to the glass/glass or glass/transparent backsheet design, the module is associated with two additional optical loss mechanisms: transmittance loss of infrared light passing through bifacial cell and transmittance loss on module inactive area (cell-gap area). In this paper, we demonstrate several novel approaches to reduce the transmittance losses and optimize the front side power of the bifacial PV module under standard test conditions (STC). To reduce the bifacial cell transmittance loss at near-infrared wavelengths, we apply an infrared (IR) reflective coating on the rear glass of the glass/glass bifacial modules. Using this approach, a current gain of about 1% is achieved. Alternatively, the bifacial cell transmittance loss can be minimized using a textured module rear cover. Demonstration of this approach on a textured transparent backsheet shows a current gain of about 0.3%. Furthermore, to reduce the cell-gap transmittance loss, we use a white reflective coating on the rear glass. Through in-depth characterization, we optimize the white reflective coating and the module design. The bifacial module with optimized white reflective coating generates about 3% more current, as compared to a standard glass/glass bifacial module without any coating. Incorporating both IR reflective and white reflective coatings, a current gain of about 4% is observed. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:484 / 494
页数:11
相关论文
共 50 条
  • [21] Thermal comparison of floating bifacial and monofacial photovoltaic modules considering two laying configurations
    Tina, Giuseppe Marco
    Osama, Amr
    Mannino, Gaetano
    Gagliano, Antonio
    Cucuzza, Alessio Vincenzo
    Bizzarri, Fabrizio
    APPLIED ENERGY, 2025, 389
  • [22] Outdoor performance of GaAs/bifacial Si heterojunction four-terminal system using optical spectrum splitting
    Scuto, A.
    Corso, R.
    Leonardi, M.
    Milazzo, R. G.
    Privitera, S. M. S.
    Colletti, C.
    Foti, M.
    Bizzarri, F.
    Gerardi, C.
    Lombardo, S. A.
    SOLAR ENERGY, 2022, 241 : 483 - 491
  • [23] Study of energy improvement with the insertion of bifacial modules and solar trackers in photovoltaic installations in Brazil
    de Melo, Karen Barbosa
    da Silva, Michelle Kitayama
    de Souza Silva, Joao Lucas
    Costa, Tatiane Silva
    Villalva, Marcelo Gradella
    RENEWABLE ENERGY FOCUS, 2022, 41 : 179 - 187
  • [24] Performance assessment of double pass photovoltaic/thermal solar air collector using bifacial PV with CPC and mirror reflector under Malaysian climate
    Saberi, Zainab
    Jarimi, Hasila
    Jumali, Mohammad Hafizuddin Hj
    Suhendri, Suhendri
    Riffat, Saffa
    Fudholi, Ahmad
    Razali, Halim Hj
    Sopian, Kamaruzzaman
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 44
  • [25] A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells
    Li, W.
    Paul, M. C.
    Rolley, M.
    Sweet, T.
    Gao, M.
    Siviter, J.
    Montecucco, A.
    Knox, A. R.
    Baig, H.
    Mallick, T. K.
    Fernandez, E. F.
    Han, G.
    Gregory, D. H.
    Azough, F.
    Freer, R.
    APPLIED ENERGY, 2017, 202 : 755 - 771
  • [26] Novel reference condition independent method for estimating performance for PV modules based on double-diode model
    Li, Guorong
    Zhang, Yunpeng
    Zhou, Hai
    Wu, Ji
    Sun, Shumin
    You, Daning
    Zhang, Yuanpeng
    RENEWABLE ENERGY, 2024, 226
  • [27] Convolutional Neural Network for Dust and Hotspot Classification in PV Modules
    Cipriani, Giovanni
    D'Amico, Antonino
    Guarino, Stefania
    Manno, Donatella
    Traverso, Marzia
    Di Dio, Vincenzo
    ENERGIES, 2020, 13 (23)
  • [28] A Simulation Model for Optimizing the Performance of Bifacial Si Solar Cells
    Chowdhury, Ahrar Ahmed
    Ebong, Abasifreke
    2015 12TH INTERNATIONAL CONFERENCE ON HIGH-CAPACITY OPTICAL NETWORKS AND ENABLING/EMERGING TECHNOLOGIES (HONET), 2015, : 161 - 164
  • [29] A coupled optical-electrical-thermal model of the bifacial photovoltaic module
    Gu, Wenbo
    Ma, Tao
    Li, Meng
    Shen, Lu
    Zhang, Yijie
    APPLIED ENERGY, 2020, 258
  • [30] Delayed PV Deployment Negates CO2 Benefits of Ultra-Low Carbon PV Modules
    Husein, Sebastian
    Woods-Robinson, Rachel
    Saive, Rebecca
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 2403 - 2406