The rank of elliptic curves with rational 2-torsion points over large fields

被引:5
作者
Im, BH [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
D O I
10.1090/S0002-9939-05-08494-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a number field, K an algebraic closure of K, G(K) the absolute Galois group Gal(<(K)overbar >/K), K-ab the maximal abelian extension of K and E/K an elliptic curve defined over K. In this paper, we prove that if all 2-torsion points of E/K are K-rational, then for each sigma epsilon G(K), E((K-ab)(sigma)) has infinite rank, and hence E( K s) has infinite rank.
引用
收藏
页码:1623 / 1630
页数:8
相关论文
共 5 条
[1]  
IM B, 2003, ARXIVMATHNT0411534
[2]  
IM B, IN PRESS CANADIAN J
[3]  
Lang S., 1983, Fundamentals of Diophantine Geometry, DOI [DOI 10.1007/978-1-4757-1810-2, 10.1007/978-1-4757-1810-2]
[4]   Rank of elliptic curves over almost separably closed fields [J].
Larsen, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :817-820
[5]  
SILVERMAN JH, 1983, J LOND MATH SOC, V28, P1