Bias driven coherent carrier dynamics in a two-dimensional aperiodic potential

被引:14
作者
de Moura, F. A. B. F. [2 ]
Viana, L. P. [3 ]
Lyra, M. L. [2 ]
Malyshev, V. A. [4 ,5 ]
Dominguez-Adame, F. [1 ]
机构
[1] Univ Complutense, Dept Fis Mat, GISC, E-28040 Madrid, Spain
[2] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio Al, Brazil
[3] Univ Fed Alagoas, BR-57200000 Penedo Al, Brazil
[4] Univ Groningen, Ctr Theoret Phys, NL-9747 AG Groningen, Netherlands
[5] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
关键词
Aperiodic potential; Coherent electron dynamics; Bloch oscillations;
D O I
10.1016/j.physleta.2008.09.019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics of an electron wave-packet in a two-dimensional square lattice with an aperiodic site potential in the presence of an external uniform electric field. The aperiodicity is described by epsilon(m) = V cos(pi alpha m(x)(nu x)) cos(pi alpha m(y)(nu y)) at lattice sites (m(x),m(y)), with pi alpha being a rational number, and v(x) and v(y) tunable parameters. controlling the aperiodicity. Using an exact diagonalization procedure and a finite-size scaling analysis, we show that in the weakly aperiodic regime (nu(x), nu(y) < 1), a phase of extended states emerges in the center of the band at zero field giving support to a macroscopic conductivity in the thermodynamic limit. Turning on the field gives rise to Bloch oscillations of the electron wave-packet. The spectral density of these oscillations may display a double peak structure signaling the spatial anisotropy of the potential landscape. The frequency of the oscillations can be understood using a semi-classical approach. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:6694 / 6700
页数:7
相关论文
共 52 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   Photon Bloch oscillations in porous silicon optical superlattices -: art. no. 097401 [J].
Agarwal, V ;
del Río, JA ;
Malpuech, G ;
Zamfirescu, M ;
Kavokin, A ;
Coquillat, D ;
Scalbert, D ;
Vladimirova, M ;
Gil, B .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :097401-1
[3]  
Albuquerque E.L., 2004, Polaritons in Periodic and Quasiperiodic Structures
[4]   Theory of elementary excitations in quasiperiodic structures [J].
Albuquerque, EL ;
Cottam, MG .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 376 (4-5) :225-337
[5]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[6]   Experimental evidence of delocalized states in random dimer superlattices [J].
Bellani, V ;
Diez, E ;
Hey, R ;
Toni, L ;
Tarricone, L ;
Parravicini, GB ;
Domínguez-Adame, F ;
Gómez-Alcalá, R .
PHYSICAL REVIEW LETTERS, 1999, 82 (10) :2159-2162
[7]   About the Quantum mechanics of Electrons in Crystal lattices. [J].
Bloch, Felix .
ZEITSCHRIFT FUR PHYSIK, 1929, 52 (7-8) :555-600
[8]   Coherent and collective quantum optical effects in mesoscopic systems [J].
Brandes, T .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 408 (5-6) :315-474
[9]  
BRIANT GW, 2005, OPTICS QUANTUM DOTS
[10]   LOCALIZATION, MOBILITY EDGES, AND METAL-INSULATOR-TRANSITION IN A CLASS OF ONE-DIMENSIONAL SLOWLY VARYING DETERMINISTIC POTENTIALS [J].
DASSARMA, S ;
HE, S ;
XIE, XC .
PHYSICAL REVIEW B, 1990, 41 (09) :5544-5565