Virial Theorem for a Class of Quantum Nonlinear Harmonic Oscillators

被引:2
|
作者
Wang Xue-Hong [1 ]
Guo Jun-Yi [1 ]
Li Yan [2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, Chern Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
virial theorem; quantum nonlinear harmonic oscillators; Hellmann-Feynman theorem;
D O I
10.1088/0253-6102/58/4/04
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Virial Theorem based on a class of quantum nonlinear harmonic oscillators is presented. This relationship has to do with parameter A and partial derivative/partial derivative lambda, where the lambda is a real number. When lambda = 0, the nonlinear harmonic oscillator naturally reduces to the usual quantum linear harmonic oscillator, and the Virial Theorem also reduces to the usual Virial Theorem.
引用
收藏
页码:480 / 482
页数:3
相关论文
共 50 条
  • [31] The Buchdahl bound denotes the geometrical Virial theorem
    Dadhich, Naresh
    Goswami, Rituparno
    Hansraj, Chevarra
    ANNALS OF PHYSICS, 2025, 477
  • [32] Conformal Killing vector fields and a virial theorem
    Carinena, Jose F.
    Gheorghiu, Irina
    Martinez, Eduardo
    Santos, Patricia
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (46)
  • [33] Virial theorem and the two molecule interaction potential
    Galibin, N. S.
    HIGH TEMPERATURE, 2012, 50 (05) : 596 - 601
  • [34] Optimization of SMES coil by using virial theorem
    Tsutsui, H
    Nomura, S
    Shimada, R
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2002, 12 (01) : 800 - 803
  • [35] Gauge invariance and the virial theorem for the quantized Schrodinger field
    Takiuchi, K
    Toyoda, T
    PHYSICS LETTERS A, 1999, 262 (01) : 40 - 43
  • [36] Average kinetic energy of heavy quark and virial theorem
    Hwang, DS
    Kim, CS
    Namgung, W
    PHYSICS LETTERS B, 1997, 406 (1-2) : 117 - 122
  • [37] The virial theorem and the ground state problem in polaron theory
    N. I. Kashirina
    V. D. Lakhno
    A. V. Tulub
    Journal of Experimental and Theoretical Physics, 2012, 114 : 867 - 869
  • [38] Pohozaev identity and Virial Theorem for the Dirac–Coulomb operator
    Vittorio Coti Zelati
    Margherita Nolasco
    Journal of Fixed Point Theory and Applications, 2017, 19 : 601 - 615
  • [39] Structural Limitations of Energy Storage Systems Based on the Virial Theorem
    Nomura, Shinichi
    Tsutsui, Hiroaki
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2017, 27 (04)
  • [40] Virial Theorem, Dark Matter, and N-Body Problems
    Saari, Donald G.
    EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE, 2008, 1043 : 93 - 100