Thermal transport in graphene supported on copper

被引:79
作者
Chen, Liang [1 ]
Kumar, Satish [1 ]
机构
[1] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30318 USA
基金
美国国家科学基金会;
关键词
ENERGY-DISSIPATION; CONDUCTIVITY;
D O I
10.1063/1.4740071
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the thermal transport in isolated single layer graphene (SLG) and SLG supported on Cu substrate using equilibrium molecular dynamics simulations and relaxation time approximation (RTA) method. We observe significant changes in the SLG dispersion curve in low frequency and low wave-vector region due to the interaction with Cu substrate. Several new phonon modes related to out-of-plane vibrations appear at the low frequency and small wave vector regions, but their contribution to graphene thermal conductivity is negligible. The thermal conductivity of graphene decreases by 44% due to the interactions with Cu substrate for high interaction strength parameter in Lennard-Jones potential formulation for graphene-Cu interaction. The phonon mode analysis through the RTA approach shows that the acoustic phonons dominate the thermal transport for both isolated and supported graphenes. The longitudinal acoustic (LA), transverse acoustic (TA), and out-of-plane acoustic (ZA) phonons contribute 654, 330, and 361W/mK to the lattice thermal conductivity of isolated graphene, respectively. The phonon life time of ZA modes decreases by order of magnitude due to the interactions with Cu substrate and ZA mode contribution to SLG thermal conductivity decreases by 282W/mK, while the contributions of LA and TA phonons reduce by 77.4W/mK and 82.9W/mK, respectively. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4740071]
引用
收藏
页数:7
相关论文
共 46 条
[1]   Imaging, Simulation, and Electrostatic Control of Power Dissipation in Graphene Devices [J].
Bae, Myung-Ho ;
Ong, Zhun-Yong ;
Estrada, David ;
Pop, Eric .
NANO LETTERS, 2010, 10 (12) :4787-4793
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]  
Chen SS, 2012, NAT MATER, V11, P203, DOI [10.1038/NMAT3207, 10.1038/nmat3207]
[8]   Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation [J].
Donadio, Davide ;
Galli, Giulia .
PHYSICAL REVIEW LETTERS, 2007, 99 (25)
[9]   Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination [J].
Evans, William J. ;
Hu, Lin ;
Keblinski, Pawel .
APPLIED PHYSICS LETTERS, 2010, 96 (20)
[10]  
FOILES SM, 1986, PHYS REV B, V33, P7983, DOI 10.1103/PhysRevB.33.7983