A modified Lagrange-Galerkin method for a fluid-rigid system with discontinuous density

被引:3
作者
San Martin, Jorge [3 ,4 ]
Scheid, Jean-Francois [2 ]
Smaranda, Loredana [1 ]
机构
[1] Univ Pitesti, Fac Math & Comp Sci, Dept Math & Comp Sci, Pitesti 110040, Romania
[2] Univ Lorraine, CNRS, INRIA, Inst Elie Cartan Nancy,UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[3] Univ Chile, Fac Ciencias Fis & Matemat, CNRS, Dept Ingn Matemat, Santiago, Chile
[4] Univ Chile, Fac Ciencias Fis & Matemat, CNRS, Ctr Modelamiento Matemat,UMR 2071, Santiago, Chile
关键词
CONVERGENCE; EQUATIONS; FLOW;
D O I
10.1007/s00211-012-0460-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new characteristics method for the discretization of the two dimensional fluid-rigid body problem in the case where the densities of the fluid and the solid are different. The method is based on a global weak formulation involving only terms defined on the whole fluid-rigid domain. To take into account the material derivative, we construct a special characteristic function which maps the approximate rigid body at the (k + 1)-th discrete time level into the approximate rigid body at k-th time. Convergence results are proved for both semi-discrete and fully-discrete schemes.
引用
收藏
页码:341 / 382
页数:42
相关论文
共 23 条
[1]   Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations [J].
Achdou, Y ;
Guermond, JL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) :799-826
[2]  
[Anonymous], 1983, Problemes mathematiques en plasticite
[3]  
Arnold Vladimir, 1992, Ordinary Differential Equations
[4]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[5]  
Formaggia L, 1999, East-West J Numer Math, V7, P105
[6]  
Gastaldi L., 2001, E W J NUMER MATH, V2, P123
[7]  
Girault V., 1979, FINITE ELEMENT APPRO, DOI DOI 10.1007/BFB0063447
[8]   A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow [J].
Glowinski, R ;
Pan, TW ;
Hesla, TI ;
Joseph, DD ;
Periaux, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 184 (2-4) :241-267
[9]  
Glowinski R., 2001, J COMPUT PHYS, V169, P63
[10]   Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid structure interaction [J].
Grandmont, C ;
Guimet, V ;
Maday, Y .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (08) :1349-1377