Recent in vitro studies have established that activated B cells express OX40 ligand (L), a member of the tumor necrosis factor/nerve growth factor family of cytokines, and become stimulated to proliferate and secrete immunoglobulin (Ig) after cross-linking of OX40L by its counterreceptor OX40, which is expressed on activated T cells. In the present study we investigated the in vivo role of this receptor-ligand pair for the interaction of T and B cells in the course of the T-dependent B cell response against 2,4,6 trinitro-phenyl-keyhole limpet hemocyanin. First, we showed that OX40 is maximally expressed by T cells in the periarteriolar lymphoid sheath (PALS) 3 d after primary immunization. These OX40(+) cells are located in close proximity to antigen-specific, activated B cells. Second, we demonstrated that blocking of OX40-OX40L interaction with a polyclonal anti-OX40 antibody or with antibodies against certain peptide sequences within its extracellular domain resulted in a profound decrease of the antihapten IgG response, whereas the antihapten IgM, response was grossly unchanged. Third, we showed that this antibody treatment leads to an inhibition of the development of PALS-associated B cell foci, whereas the formation of germinal centers remained intact. Finally, our data suggest that, whereas B cell memory development was not impaired by anti-OX40 administration, OX40-OX40L interaction seems to be crucial in the secondary immune response. We conclude from these data that the OX40-OX40L interaction in vivo is necessary for the differentiation of activated B cells into highly Ig-producing cells, but is not involved in other pathways of antigen-driven B cell differentiation such as memory cell development in the germinal centers.