Local Texture Estimator for Implicit Representation Function

被引:85
作者
Lee, Jaewon [1 ]
Jin, Kyong Hwan [1 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Daegu, South Korea
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022) | 2022年
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/CVPR52688.2022.00197
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent works with an implicit neural function shed light on representing images in arbitrary resolution. However, a standalone multi-layer perceptron shows limited performance in learning high frequency components. In this paper, we propose a Local Texture Estimator (LTE), a dominant frequency estimator for natural images, enabling an implicit function to capture fine details while reconstructing images in a continuous manner. When jointly trained with a deep super-resolution (SR) architecture, LTE is capable of characterizing image textures in 2D Fourier space. We show that an LTE-based neural function achieves favorable performance against existing deep SR methods within an arbitrary-scale factor. Furthermore, we demonstrate that our implementation takes the shortest running time compared to previous works.
引用
收藏
页码:1928 / 1937
页数:10
相关论文
共 35 条
  • [1] NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study
    Agustsson, Eirikur
    Timofte, Radu
    [J]. 2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 1122 - 1131
  • [2] Bevilacqua A, 2017, WOODHEAD PUBL FOOD S, P1
  • [3] Pre-Trained Image Processing Transformer
    Chen, Hanting
    Wang, Yunhe
    Guo, Tianyu
    Xu, Chang
    Deng, Yiping
    Liu, Zhenhua
    Ma, Siwei
    Xu, Chunjing
    Xu, Chao
    Gao, Wen
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12294 - 12305
  • [4] Chen Yinbo, 2006, P IEEE CVF C COMP VI, P8628
  • [5] Chiyu Max, 2020, IEEE CVF C COMP VIS
  • [6] Dai Tao, 2019, P IEEE CVF C COMP VI, V1, P2
  • [7] Dosovitskiy A., 2021, P INT C LEARN REPR, P11929
  • [8] Ha D., 2017, P INT C LEARN REPR
  • [9] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [10] Hu Xuecai, 2006, P IEEE CVF C COMP VI