On the Cauchy problem for the wave equation on time-dependent domains

被引:10
作者
Dal Maso, Gianni [1 ]
Toader, Rodica [2 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Udine, DMIF, Via Sci 206, I-33100 Udine, Italy
关键词
Wave equation; Time-dependent domains; Existence and uniqueness;
D O I
10.1016/j.jde.2018.08.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion of solution to the wave equation on a suitable class of time-dependent domains and compare it with a previous definition. We prove an existence result for the solution of the Cauchy problem and present some additional conditions which imply uniqueness. (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:3209 / 3246
页数:38
相关论文
共 14 条
[1]  
AUBIN JP, 1963, CR HEBD ACAD SCI, V256, P5042
[2]  
Brezis H., 1973, OPERATEURS MAXIMAUX, V5
[3]  
Caponi M., UNPUB
[4]   Linear Hyperbolic Systems in Domains with Growing Cracks [J].
Caponi, Maicol .
MILAN JOURNAL OF MATHEMATICS, 2017, 85 (01) :149-185
[5]   Quasistatic crack growth in nonlinear elasticity [J].
Dal Maso, G ;
Francfort, GA ;
Toader, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (02) :165-225
[6]   The wave equation on domains with cracks growing on a prescribed path: Existence, uniqueness, and continuous dependence on the data [J].
Dal Maso G. ;
Lucardesi I. .
Applied Mathematics Research eXpress, 2017, 2017 (01) :184-241
[7]   Existence for constrained dynamic Griffith fracture with a weak maximal dissipation condition [J].
Dal Maso, Gianni ;
Larsen, Christopher J. ;
Toader, Rodica .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 95 :697-707
[8]   Existence for wave equations on domains with arbitrary growing cracks [J].
Dal Maso, Gianni ;
Larsen, Christopher J. .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (03) :387-408
[9]  
Freund LB, 1990, Dynamic fracture mechanics
[10]  
HAHN H, 1914, MATH PHYS AKAD WISS, V123, P713