Significance of the ZnO nanorod array morphology for low-bandgap polymer solar cells in inverted structures

被引:11
|
作者
Kao, Shao-Hsuan [1 ]
Tseng, Zong-Liang [1 ]
Ho, Ping-Yi [1 ]
Kao, Chia-Yu [2 ]
Thiyagu, Subramani [1 ]
Lin, Ching-Fuh [1 ,2 ]
机构
[1] Natl Taiwan Univ, Grad Inst Photon & Optoelect, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 10617, Taiwan
关键词
POLY(3-HEXYLTHIOPHENE);
D O I
10.1039/c3ta13203j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper reports an inverted solar cell with ZnO nanorods for electron collection. Because ZnO materials could function as the electron transport layer in inverted organic solar cells, the ZnO nanorods further provided a large number of carrier extraction channels deep inside the organic active layer to improve carrier collection efficiency. The relationship between the ZnO nanorod array morphology and the device performance was systematically studied. Different ZnO nanorod morphologies could be controlled by the ratio of zinc nitrate and hexamethylenetetramine in a low-cost hydrothermal method, including the average spacing between individual nanorods and the surface area. For a maximum organic-inorganic contact area and good polymer infiltration, the morphology of the ZnO nanorod array has been optimized. When the ratio of zinc nitrate and hexamethylenetetramine was controlled at 1.0 : 0.6 in the growth-promoting solution, the surface area of the nanorod array was 7.55 times more than a planar ZnO structure. The ZnO nanorods significantly enhanced the performance of inverted PBDTTT-C-T:PC71BM solar cells and the power conversion efficiency of the device increased from 5.22% to 7.26%.
引用
收藏
页码:14641 / 14648
页数:8
相关论文
共 50 条
  • [1] ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells
    Ho, Ping-Yi
    Thiyagu, Subramani
    Kao, Shao-Hsuan
    Kao, Chia-Yu
    Lin, Ching-Fuh
    NANOSCALE, 2014, 6 (01) : 466 - 471
  • [2] Effect of vertical morphology on the performance of silole-containing low-bandgap inverted polymer solar cells
    Subbiah, Jegadesan
    Amb, Chad M.
    Reynolds, John R.
    So, Franky
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 97 : 97 - 101
  • [3] Stable Inverted Low-Bandgap Polymer Solar Cells with Aqueous Solution Processed Low-Temperature ZnO Buffer Layers
    Zhang, Chunfu
    Pang, Shangzheng
    Heng, Ting
    You, Hailong
    Han, Genquan
    Lu, Gang
    He, Fengqin
    Jiang, Qubo
    Zhang, Jincheng
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2016, 2016
  • [4] Low-bandgap polymer photovoltaic cells
    van Duren, JKJ
    Dhanabalan, A
    van Hal, PA
    Janssen, RAJ
    SYNTHETIC METALS, 2001, 121 (1-3) : 1587 - 1588
  • [5] Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer
    Letian Dou
    Jingbi You
    Jun Yang
    Chun-Chao Chen
    Youjun He
    Seiichiro Murase
    Tom Moriarty
    Keith Emery
    Gang Li
    Yang Yang
    Nature Photonics, 2012, 6 (3) : 180 - 185
  • [6] Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer
    Dou, Letian
    You, Jingbi
    Yang, Jun
    Chen, Chun-Chao
    He, Youjun
    Murase, Seiichiro
    Moriarty, Tom
    Emery, Keith
    Li, Gang
    Yang, Yang
    NATURE PHOTONICS, 2012, 6 (03) : 180 - 185
  • [7] Dye Sensitization in the Visible Region for Low-Bandgap Polymer Solar Cells
    Wang, Yanbin
    Zheng, Bo
    Tamai, Yasunari
    Ohkita, Hideo
    Benten, Hiroaki
    Ito, Shinzaburo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (07) : D3093 - D3096
  • [8] Kinetic Monte Carlo Modeling of Low-Bandgap Polymer Solar Cells
    Albes, Tim
    Popescu, Bogdan
    Popescu, Dan
    Loch, Marius
    Arca, Francesco
    Lugli, Paolo
    2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, : 57 - 62
  • [9] Performance Enhancement of Inverted Polymer Solar Cells Using Roughened Al-Doped ZnO Nanorod Array
    Lee, Hsin-Ying
    Huang, Hung-Lin
    Lee, Ching-Ting
    APPLIED PHYSICS EXPRESS, 2012, 5 (12)
  • [10] Thienopyrazine-based low-bandgap polymers for flexible polymer solar cells
    Sensfuss, S.
    Blankenburg, L.
    Schache, H.
    Shokhovets, S.
    Erb, T.
    Konkin, A.
    Herasimovich, A.
    Scheinert, S.
    Shahid, M.
    Sell, S.
    Klemm, E.
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2010, 51 (03): : 33204 - p1