Petrology and geochemistry of mafic and ultramafic cumulate rocks from the eastern part of the Sabzevar ophiolite (NE Iran): Implications for their petrogenesis and tectonic setting

被引:19
作者
Rahmani, Fatemeh [1 ]
Mackizadeh, Mohamad Ali [1 ]
Noghreyan, Moussa [1 ]
Marchesi, Claudio [2 ,3 ]
Garrido, Carlos J. [2 ]
机构
[1] Univ Isfahan, Fac Sci, Dept Geol, POB 81746-73441, Esfahan, Iran
[2] Univ Granada, CSIC, Inst Andaluz Ciencias Tierra IACT, Ave Las Palmeras 4, Granada 18100, Spain
[3] Univ Granada, Fac Ciencias, Dept Mineral & Petrol, Ave Fuentenueva S-N, Granada 18002, Spain
关键词
Petrology; Geochemistry; Cumulate rocks; Sabzevar ophiolite; Supra-subduction zone; Iran; FIELD STRENGTH ELEMENTS; METAMORPHOSED MANTLE PERIDOTITES; PRESSURE CRYSTAL FRACTIONATION; POZANTI-KARSANTI OPHIOLITE; MINERAL CHEMISTRY; TRACE-ELEMENTS; TRANSITION ZONE; OCEANIC-CRUST; FORE-ARC; LOW-TI;
D O I
10.1016/j.gsf.2020.02.004
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Late Cretaceous Sabzevar ophiolite represents one of the largest and most complete fragments of Tethyan oceanic lithosphere in the NE Iran. It is mainly composed of serpentinized mantle peridotites slices; nonetheless, minor tectonic slices of all crustal sequence constituents are observed in this ophiolite. The crustal sequence contains a well-developed ultramafic and mafic cumulates section, comprising plagioclase-bearing wehrlite, olivine clinopyroxenite, olivine gabbronorite, gabbronorite, amphibole gabbronorite and quartz gabbronorite with adcumulate, mesocumulate, heteradcumulate and orthocumulate textures. The crystallization order for these rocks is olivine +/- chromian spinel -> clinopyroxene -> plagioclase -> orthopyroxene -> amphibole. The presence of primary magmatic amphiboles in the cumulate rocks shows that the parent magma evolved under hydrous conditions. Geochemically, the studied rock units are characterized by low TiO2 (0.18-0.57 wt.%), P2O5 (<0.05 wt.%), K2O (0.01-0.51 wt.%) and total alkali contents (0.12-3.04 wt.%). They indicate fractionated trends in the chondrite-normalized rare earth element (REE) plots and multi-element diagrams (spider diagrams). The general trend of the spider diagrams exhibit slight enrichment in large ion lithophile elements (LILEs) relative to high field strength elements (HFSEs) and positive anomalies in Sr, Pb and Eu and negative anomalies in Zr and Nb relative to the adjacent elements. The REE plots of these rocks display increasing trend from La to Sm, positive Eu anomaly (Eu/Eu* = 1.06-1.54) and an almost flat pattern from medium REE (MREE) to heavy REE (HREE) region [(Gd/ Yb)(N) = 1-1.17]. Moreover, clinopyroxenes from the cumulate rocks have low REE contents and show marked depletion in light REE (LREE) compared to MREE and HREE [(La/Sm)(N) = 0.10-0.27 and (La/Yb)(N) = 0.08-0.22]. The composition of calculated melts in equilibrium with the clinopyroxenes from less evolved cumulate samples are closely similar to island arc tholeiitic (IAT) magmas. Modal mineralogy, geochemical features and REE modeling indicate that Sabzevar cumulate rocks were formed by crystal accumulation from a hydrous depleted basaltic melt with IAT affinity. This melt has been produced by moderate to high degree (similar to 15%) of partial melting a depleted mantle source, which partially underwent metasomatic enrichment from subducted slab components in an intra-oceanic arc setting.
引用
收藏
页码:2347 / 2364
页数:18
相关论文
共 150 条