Visual word spatial arrangement for image retrieval and classification

被引:73
作者
Penatti, Otavio A. B. [1 ]
Silva, Fernanda B. [1 ]
Valle, Eduardo [1 ,2 ]
Gouet-Brunet, Valerie [3 ,4 ]
Torres, Ricardo da S. [1 ]
机构
[1] Univ Campinas Unicamp, Inst Comp, RECOD Lab, BR-13083852 Campinas, SP, Brazil
[2] Univ Campinas Unicamp, Sch Elect & Comp Engn FEEC, Dept Comp Engn & Ind Automat DCA, BR-13083852 Campinas, SP, Brazil
[3] Paris Est Univ, IGN SR, MATIS Lab, F-94160 St Mande, France
[4] CNAM, CEDRIC Lab, F-75141 Paris 03, France
基金
巴西圣保罗研究基金会;
关键词
Visual words; Spatial arrangement; Image retrieval; Image classification;
D O I
10.1016/j.patcog.2013.08.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origin. WSA generates compact feature vectors and is flexible for being used for image retrieval and classification, for working with hard or soft assignment, requiring no pre/post processing for spatial verification. Experiments in the retrieval scenario show the superiority of WSA in relation to Spatial Pyramids. Experiments in the classification scenario show a reasonable compromise between those methods, with Spatial Pyramids generating larger feature vectors, while WSA provides adequate performance with much more compact features. As WSA encodes only the spatial information of visual words and not their frequency of occurrence, the results indicate the importance of such information for visual categorization. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:705 / 720
页数:16
相关论文
共 50 条
  • [21] Words Matter: Scene Text for Image Classification and Retrieval
    Karaoglu, Sezer
    Tao, Ran
    Gevers, Theo
    Smeulders, Arnold W. M.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (05) : 1063 - 1076
  • [22] Word image retrieval using binary features
    Zhang, B
    Srihari, SN
    Huang, C
    DOCUMENT REGOGNITION AND RETRIEVAL XI, 2004, 5296 : 45 - 53
  • [23] FAST VISUAL WORD QUANTIZATION VIA SPATIAL NEIGHBORHOOD BOOSTING
    Xu, Ruixin
    Shi, Miaojing
    Geng, Bo
    Xu, Chao
    2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,
  • [24] Image Retrieval using Visual Phrases
    Anwar, Benish
    Baber, Junaid
    Ahmed, Atiq
    Bakhtyar, Maheen
    Daudpota, Sher Muhammad
    Sanjrani, Anwar Ali
    Ullah, Ihsan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (03) : 476 - 480
  • [25] Holons Visual Representation for Image Retrieval
    Dong, Le
    Liang, Yan
    Kong, Gaipeng
    Zhang, Qianni
    Cao, Xiaochun
    Izquierdo, Ebroul
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (04) : 714 - 725
  • [26] VIRaL: Visual Image Retrieval and Localization
    Yannis Kalantidis
    Giorgos Tolias
    Yannis Avrithis
    Marios Phinikettos
    Evaggelos Spyrou
    Phivos Mylonas
    Stefanos Kollias
    Multimedia Tools and Applications, 2011, 51 : 555 - 592
  • [27] Visual synonyms for landmark image retrieval
    Gavves, Efstratios
    Snoek, Cees G. M.
    Smeulders, Arnold W. M.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2012, 116 (02) : 238 - 249
  • [28] Visual guided navigation for image retrieval
    Qiu, Guoping
    Morris, Jeremy
    Fan, Xunli
    PATTERN RECOGNITION, 2007, 40 (06) : 1711 - 1721
  • [29] VIRaL: Visual Image Retrieval and Localization
    Kalantidis, Yannis
    Tolias, Giorgos
    Avrithis, Yannis
    Phinikettos, Marios
    Spyrou, Evaggelos
    Mylonas, Phivos
    Kollias, Stefanos
    MULTIMEDIA TOOLS AND APPLICATIONS, 2011, 51 (02) : 555 - 592
  • [30] Keyword Visual Representation for Image Retrieval and Image Annotation
    Nhu Van Nguyen
    Boucher, Alain
    Ogier, Jean-Marc
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (06)