Many-body heat radiation and heat transfer in the presence of a nonabsorbing background medium

被引:50
作者
Mueller, Boris [1 ,2 ]
Incardone, Roberta [1 ,2 ]
Antezza, Mauro [3 ,4 ]
Emig, Thorsten [5 ,6 ]
Krueger, Matthias [1 ,2 ]
机构
[1] Univ Stuttgart, Inst Theoret Phys 4, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Max Planck Inst Intelligent Syst, Heisenbergstr 3, D-70569 Stuttgart, Germany
[3] Univ Montpellier, UMR CNRS 5221, L2C, F-34095 Montpellier, France
[4] Inst Univ France, 1 Rue Descartes, F-75231 Paris 05, France
[5] MIT, Joint MIT CNRS Lab UMI 3466, MultiScale Mat Sci Energy & Environm, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] Univ Paris Saclay, CNRS UMR 8626, Lab Phys Theor & Model Stat, F-91405 Orsay, France
关键词
CLOSELY-SPACED BODIES; NEAR-FIELD; THERMAL-EQUILIBRIUM; FORCES; FLUCTUATIONS; NANOSCALE; SPHERE;
D O I
10.1103/PhysRevB.95.085413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Heat radiation and near-field radiative heat transfer can be strongly manipulated by adjusting geometrical shapes, optical properties, or the relative positions of the objects involved. Typically, these objects are considered as embedded in vacuum. By applying the methods of fluctuational electrodynamics, we derive general closed-form expressions for heat radiation and heat transfer in a system of N arbitrary objects embedded in a passive nonabsorbing background medium. Taking into account the principle of reciprocity, we explicitly prove the symmetry and positivity of transfer in any such system. Regarding applications, we find that the heat radiation of a sphere as well as the heat transfer between two parallel plates is strongly enhanced by the presence of a background medium. Regarding near-and far-field transfer through a gas like air, we show that a microscopic model (based on gas particles) and a macroscopic model (using a dielectric contrast) yield identical results. We also compare the radiative transfer through a medium like air and the energy transfer found from kinetic gas theory.
引用
收藏
页数:18
相关论文
共 75 条
[31]   Thermally excited near-field radiation and far-field interference [J].
Kajihara, Yusuke ;
Kosaka, Keishi ;
Komiyama, Susumu .
OPTICS EXPRESS, 2011, 19 (08) :7695-7704
[32]   RADIATION FROM A HOMOGENEOUS ISOTHERMAL SPHERE [J].
KATTAWAR, GW ;
EISNER, M .
APPLIED OPTICS, 1970, 9 (12) :2685-&
[33]   Radiative heat transfer in the extreme near field [J].
Kim, Kyeongtae ;
Song, Bai ;
Fernandez-Hurtado, Victor ;
Lee, Woochul ;
Jeong, Wonho ;
Cui, Longji ;
Thompson, Dakotah ;
Feist, Johannes ;
Reid, M. T. Homer ;
Garcia-Vidal, Francisco J. ;
Cuevas, Juan Carlos ;
Meyhofer, Edgar ;
Reddy, Pramod .
NATURE, 2015, 528 (7582) :387-391
[34]  
Kirchhoff G., 1860, Ann. Phys., V185, P275, DOI [DOI 10.1002/ANDP.18601850205, 10.1002/andp.18601850205]
[35]   Near-field heat transfer in a scanning thermal microscope -: art. no. 224301 [J].
Kittel, A ;
Müller-Hirsch, W ;
Parisi, J ;
Biehs, SA ;
Reddig, D ;
Holthaus, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)
[36]  
KONG JA, 1972, PR INST ELECTR ELECT, V60, P1036, DOI 10.1109/PROC.1972.8851
[37]   Non-equilibrium Casimir forces: Spheres and sphere-plate [J].
Krueger, M. ;
Emig, T. ;
Bimonte, G. ;
Kardar, M. .
EPL, 2011, 95 (02)
[38]   Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects [J].
Krueger, Matthias ;
Bimonte, Giuseppe ;
Emig, Thorsten ;
Kardar, Mehran .
PHYSICAL REVIEW B, 2012, 86 (11)
[39]   Nonequilibrium Electromagnetic Fluctuations: Heat Transfer and Interactions [J].
Krueger, Matthias ;
Emig, Thorsten ;
Kardar, Mehran .
PHYSICAL REVIEW LETTERS, 2011, 106 (21)
[40]  
Landau L. D., 2013, COURSE THEORETICAL P